No quartic curve supports

3-body figure-eight solution
under homogeneous potential

Toshiaki Fujiwara
Hamsys-2008, July 9
CIMAT, Guanajuato

Three body figure-eight solution

\square C. Moore (1993) found numerically
\square A. Chenciner and R. Montgomery (2000) proved the existence

Three body figure-eight solution

$$
\begin{aligned}
& i=1,2,3, m_{i}=1 \\
& \ddot{q}_{k}=\sum_{j \neq k} \frac{q_{j}-q_{k}}{\left|q_{j}-q_{k}\right|^{3}}, \\
&\left\{\begin{array}{l}
q_{1}(t) \\
q_{2}(t)
\end{array}=q(t),\right. \\
& q_{3}(t)=q(t+T / 3), \\
& \sum_{i} q_{i}=0, \sum_{i} q_{i} \times \dot{q}_{i}=0
\end{aligned}
$$

Three body figure-eight solution

\square C. Simó (20oi) : Tried to fit the orbit by order 4, 6, 8 curve, numerically.

$$
f(x, y)=\sum_{k=1}^{m} \sum_{j=0}^{k} c_{2(k-j)} x^{2(k-j)} y^{2 j}=0
$$

He conclude that the c is not order 4,6,8.

"Even with $m=2$ (order 4) one cannot distinguish the eight from $f(x, y)=0$ without magnification."

A few is known about the shape of the figure-eight solution

- A. Chenciner and R. Montgomery: The shape is star. Namely $r=r(\theta)$.
- C. Simó:

The curve is not order 4, 6, 8.(Numerical proof)

- T. Fujiwara and R. Montgomery: Each lobe is convex.

I want to know more about the shape.

Three body figure-eight solution on the Lemniscate

\square T. Fujiwara, H. Fukuda, H. Ozaki (2003)

$$
\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}
$$

The motion satisfies $\ddot{q}_{i}=-\frac{\partial}{\partial q_{i}} U$ with

$$
U=\sum_{i<j}\left(\frac{1}{2} \ln r_{i j}-\frac{\sqrt{3}}{24} r_{i j}^{2}\right),
$$

an inhomogeneous potential.

The shape of

 figure-eight orbitis NOT order $4,6,8 \quad$ for $U=-\sum \frac{1}{r_{i j}}$
IS order 4 (Lemniscate) for $U=\sum \frac{1}{2} \ln r_{i j}-\frac{\sqrt{3}}{24} r_{i j}^{2}$

My question is;

Is there any figure-eight solution under the homogeneous potential $U=\frac{1}{\alpha} \sum r_{i j}^{\alpha}, \alpha \neq 0$ or $U=\sum \log r_{i j}$, whose orbit is order 4 curve?
$H=K+U, \ddot{q}_{i}=-\frac{\partial U}{\partial q_{i}} . \alpha=-1$ for the Newton potential.

The shape of

 figure-eight orbitis NOT order $4,6,8 \quad$ for $U=-\sum \frac{1}{r_{i j}}$
IS order 4 (Lemniscate) for $U=\sum \frac{1}{2} \ln r_{i j}-\frac{\sqrt{3}}{24} r_{i j}^{2}$

In other words;

Can quartic curve (order 4 curve) support the figure-eight solution under the potential $\frac{1}{\alpha} \sum r_{i j}^{\alpha}$ or $\sum \log r_{i j}$?

The shape of

 figure-eight orbitis NOT order 4, 6, $8 \quad$ for $U=-\sum \frac{1}{r_{i j}}$
IS order 4 (Lemniscate) for $U=\sum \frac{1}{2} \ln r_{i j}-\frac{\sqrt{3}}{24} r_{i j}^{2}$

The answer is;

Quartic curve (order 4 curve) cannot support the figure-eight solution under the potential $\frac{1}{\alpha} \sum r_{i j}^{\alpha}$ or $\sum \log r_{i j}$.
is not order 4 for $U=\frac{1}{\alpha} \sum r_{i j}^{\alpha}$ or $\sum \log r_{i j}$

We will show this in two steps

is not order $4 \quad$ for $U=\frac{1}{\alpha} \sum r_{i j}^{\alpha}$ or $\sum \log r_{i j}$

Quartic

homogeneous U

1. The order 4 curve that can support a figure-eight solution is the lemniscate $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$ and $x \rightarrow \lambda x, y \rightarrow$ μy.
2. The lemniscate $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$ and $x \rightarrow \lambda x, y \rightarrow \mu y$ cannot support the figure-eight solution under the potential $\frac{1}{\alpha} \sum r_{i j}^{\alpha}, \alpha \neq 0$ or $\log \sum r_{i j}$.

The first step

Quartic curve that can support figure-eight solution is only the lemniscate and its scale variant

Three tangents theorem

For three-body motion, if $\sum_{i=1,2,3} p_{i}=0$ and
$\sum q_{i} \times p_{i}=0$, then three tangent lines meet at a $i=1,2,3$
point for each instant. (Fujiwara, Fukuda and Ozaki 2003)

Euler \& Isosceles Config.

Proof

If two tangents t_{1} and t_{2} meet at a point C_{t}, then $\sum p_{i}=0$ and $\sum q_{i} \times p_{i}=0 \Rightarrow \sum\left(q_{i}-C_{t}\right) \times p_{i}=0$ and $\left(q_{1}-C_{t}\right) \times p_{1}=0,\left(q_{2}-C_{t}\right) \times p_{2}=0$.

Proof

If two tangents t_{1} and t_{2} meet at a point C_{t}, then $\sum p_{i}=0$ and $\sum q_{i} \times p_{i}=0 \Rightarrow \sum\left(q_{i}-C_{t}\right) \times p_{i}=0$ and $\left(q_{1}-C_{t}\right) \times p_{1}=0,\left(q_{2}-C_{t}\right) \times p_{2}=0$.
$\therefore\left(q_{3}-C_{t}\right) \times p_{3}=0$. Namely, the tangent line t_{3} also passes through the point C_{t}.

3 tangent theorem gives a criterion for the shape

$$
\left\{\begin{array}{l}
x=\cos (\theta) \\
y=\sin (2 \theta)
\end{array}\right.
$$

Three tangent lines for this curve at the isosceles configuration do not meet at a point.

Therefore, this curve cannot support
$\sum_{i=1,2,3} q_{i} \times p_{i}=0$ motion.

Isosceles configuration

$$
\begin{aligned}
& q_{1}(0)=\left(-1 / 2, y_{0}\right), q_{2}(0)=\left(-1 / 2,-y_{0}\right), q_{3}(0)=(1,0) . \\
& p_{1}(0)=\left(\frac{3 v}{2 y_{0}},-v\right), p_{2}(0)=\left(-\frac{3 v}{2 y_{0}},-v\right), p_{3}(0)=(0,2 v)
\end{aligned}
$$

Two parameters y_{0} and v.

We assume the invariance under time

 reversal, rotation and exchange of bodies
rotation exchange of 1 and 2
$\therefore q_{2}(t)=q_{1}(-t)^{\dagger}$ and $q_{3}(t)=q_{3}(-t)^{\dagger}$, where $(x, y)^{\dagger}=(x,-y)$. q_{3} is determined by $q_{3}(t)=-\left(q_{1}(t)+q_{2}(t)\right)=-\left(q_{1}(t)+q_{1}(-t)^{\dagger}\right)$.

Power series of the orbit

$$
\begin{aligned}
q_{1}(t) & =\left(-\frac{1}{2}, y_{0}\right)+\left(\frac{3 v}{2 y_{0}},-v\right) t+\left(\alpha_{x}, \alpha_{y}\right) \frac{t^{2}}{2}+\left(\beta_{x}, \beta_{y}\right) \frac{t^{3}}{6}+O\left(t^{4}\right) \\
& \Downarrow \\
& \Downarrow q_{2}(t)=q_{1}(-t)^{\dagger}, q_{3}(t)=-\left(q_{1}(t)+q_{1}(-t)^{\dagger}\right) \\
& \Downarrow \\
q_{2}(t) & =\left(-\frac{1}{2},-y_{0}\right)+\left(-\frac{3 v}{2 y_{0}},-v\right) t+\left(\alpha_{x},-\alpha_{y}\right) \frac{t^{2}}{2}+\left(-\beta_{x}, \beta_{y}\right) \frac{t^{3}}{6}+O\left(t^{4}\right) \\
q_{3}(t) & =(1,0)+(0,2 v) t+\left(-2 \alpha_{x}, 0\right) \frac{t^{2}}{2}+\left(0,-2 \beta_{y}\right) \frac{t^{3}}{6}+O\left(t^{4}\right)
\end{aligned}
$$

We actually need this form and vanishing angular momentum.

$$
\begin{gathered}
c=\sum_{i} q_{i} \times p_{i}=\left(3 v \alpha_{x}-y_{0} \beta_{x}+\frac{3 v \alpha_{y}}{2 y_{0}}-\frac{3 \beta_{y}}{2}\right) t^{2}+O\left(t^{3}\right) \\
\therefore c=\sum q_{i} \times p_{i}=0 \\
\Downarrow \\
3 v \alpha_{x}-y_{0} \beta_{x}+\frac{3 v \alpha_{y}}{2 y_{0}}-\frac{3 \beta_{y}}{2}=0 .
\end{gathered}
$$

Quartic curves

$$
P\left(x^{2}, y^{2}\right)=x^{4}+a x^{2} y^{2}+b y^{4}-x^{2}+y^{2}=0
$$

$$
\begin{aligned}
& P\left(x_{i}(t)^{2}, y_{i}(t)^{2}\right)=Q_{i}(t)=0, \text { then } \\
& Q_{i}(0)=\frac{d Q_{i}}{d t}(0)=\frac{d^{2} Q_{i}}{d t^{2}}(0)=\cdots=\frac{d^{n} Q_{i}}{d t^{n}}(0)=0
\end{aligned}
$$

$$
\Downarrow
$$

$$
\therefore a=2
$$

$$
b=\frac{3\left(1-8 y_{0}^{2}\right)}{16 y_{0}^{4}}
$$

$$
P=x^{4}+2 x^{2} y^{2}+b y^{4}-x^{2}+y^{2}=0
$$

$$
\begin{aligned}
& Q_{i}(t)=P\left(x_{i}(t)^{2}, y_{i}(t)^{2}\right) \Rightarrow Q_{1}(t)=Q_{2}(t) \\
& Q_{1}(0)=0 \Rightarrow \frac{1}{16}\left(-3+16 y_{0}^{2}+4 a y_{0}^{2}+16 b y_{0}^{4}\right)=0 . \\
& \frac{d Q_{1}}{d t}(0)=0 \Rightarrow-\frac{v}{4 y_{0}}\left(-3+8 y_{0}^{2}+8 a y_{0}^{2}+16 b y_{0}^{4}\right)=0 \text {. }
\end{aligned}
$$

$$
\begin{gathered}
\frac{d^{2} Q_{3}}{d t^{2}}=0, Q_{3}=P\left(x_{3}(t)^{2}, y_{3}(t)^{2}\right) \\
\Downarrow \\
2\left(6 v^{2}-\alpha_{x}\right)=0 \\
\therefore \alpha_{x}=6 v^{2} \\
\frac{d^{2} Q_{1}}{d t^{2}}(0)=0 \Rightarrow 2 v^{2}\left(3+6 y_{0}^{2}-8 y_{0}^{4}\right)+y_{0} \alpha_{y}\left(1-4 y_{0}^{2}\right)=0 \\
\frac{d^{3} Q_{1}}{d t^{3}}(0)=0 \Rightarrow 3 v^{2}\left(5-16 y_{0}^{4}\right)+2 y_{0} \alpha_{y}\left(1-4 y_{0}^{2}\right)=0 \\
\Downarrow \\
\therefore 3\left(1-8 y_{0}^{2}\right)=16 y_{0}^{4}
\end{gathered}
$$

Since $b=\frac{3\left(1-8 y_{0}^{2}\right)}{16 y_{0}^{4}}$, we get $b=1$.
Thus, $P\left(x^{2}, y^{2}\right)=x^{4}+2 x^{2} y^{2}+1 y^{4}-x^{2}+y^{2}=0$.

Therefore, quartic orbit that can support figure-eight solution is only the lemniscate,

$$
\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}
$$

and $x \rightarrow \lambda x, y \rightarrow \mu y$.

Actually, FFO found a figure-eight solution on the lemniscate. The motion is governed by a inhomogeneous potential.

The second step

"Lemniscate" cannot support the figure-eight solution under homogeneous potential

Motion under

homogeneous potential

Now, we assume the equation of motion,

$$
\begin{aligned}
& \frac{d^{2} q_{i}(t)}{d t^{2}}=\sum_{j}\left(q_{j}-q_{i}\right)\left|q_{j}-q_{i}\right|^{2 \gamma}, \gamma \in \mathbb{R} \\
& \quad \gamma=-3 / 2 \text { for the Newton force }
\end{aligned}
$$

Then, we will show that the orbit $q_{i}=\left(x_{i}, y_{i}\right)$ cannot satisfy $\left(x^{2}+\mu^{2} y^{2}\right)^{2}=x^{2}-\mu^{2} y^{2}$, even if we tune $\gamma \in \mathbb{R}$ and the initial parameters $y_{0} \in \mathbb{R}$ and $v \in \mathbb{R}$

Power series of the orbit

$$
\begin{aligned}
& x_{1}(t)=-\frac{1}{2}+\frac{3 v t}{2 y_{0}}+\frac{3}{4}\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma} t^{2}-\frac{v}{8 y_{0}}\left(2^{2 \gamma+2}\left(y_{0}^{2}\right)^{\gamma}+\frac{2\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma}\left(24 \gamma y_{0}^{2}+4 y_{0}^{2}+18 \gamma+9\right)}{4 y_{0}^{2}+9}\right) t^{3}+\ldots \\
& y_{1}(t)=y_{0}-v t-\left(2^{2 \gamma} y_{0}\left(y_{0}^{2}\right)^{\gamma}+\frac{1}{2} y_{0}\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma}\right) t^{2}+\frac{v\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma}\left((8 \gamma+4) y_{0}^{2}+6 \gamma+9\right) t^{3}}{2\left(4 y_{0}^{2}+9\right)}+\ldots \\
& x_{2}(t)=-\frac{1}{2}-\frac{3 v t}{2 y_{0}}+\frac{3}{4}\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma} t^{2}+\frac{v}{8 y_{0}}\left(2^{2 \gamma+2}\left(y_{0}^{2}\right)^{\gamma}+\frac{2\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma}\left(24 \gamma y_{0}^{2}+4 y_{0}^{2}+18 \gamma+9\right)}{4 y_{0}^{2}+9}\right) t^{3}+\ldots \\
& y_{2}(t)=-y_{0}-v t+\left(2^{2 \gamma} y_{0}\left(y_{0}^{2}\right)^{\gamma}+\frac{1}{2} y_{0}\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma}\right) t^{2}+\frac{v\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma}\left((8 \gamma+4) y_{0}^{2}+6 \gamma+9\right) t^{3}}{2\left(4 y_{0}^{2}+9\right)}+\ldots \\
& x_{3}(t)=1-\frac{3}{2}\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma} t^{2}+0 \times t^{3}+\ldots \\
& y_{3}(t)=2 v t-\frac{v\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma}\left((8 \gamma+4) y_{0}^{2}+6 \gamma+9\right) t^{3}}{4 y_{0}^{2}+9}+\ldots
\end{aligned}
$$

Here, I write the series to t^{3}, but actually, we calculated to the order t^{6} using Mathematica.

Power series of the condition

$$
\left(x_{i}(t)^{2}+\mu^{2} y_{i}(t)^{2}\right)^{2}-x_{i}(t)^{2}+\mu^{2} y_{i}(t)^{2}=\sum_{i, n} c_{i n} t^{n}=0
$$

$$
\begin{gathered}
\text { with } \mu^{2}=(2 \sqrt{3}-3) /\left(4 y_{0}^{2}\right) \\
\hat{\Downarrow} \\
c_{i n}=0 \text { for } i=1,2,3 \text { and } n=0,1,2, \ldots
\end{gathered}
$$

Conditions for the parameters y_{0}, v, γ.

$$
\begin{aligned}
& c_{i 0}=c_{i 1}=0 \\
& c_{12}=\frac{3}{2 y_{0}^{2}}\left(\sqrt{3} v^{2}-2^{2 \gamma}(2-\sqrt{3}) y_{0}^{2(\gamma+1)}\right)=0, \\
& c_{32}=\frac{3 \sqrt{3}(2-\sqrt{3}) v^{2}}{y_{0}^{2}}-3\left(y_{0}^{2}+\frac{9}{4}\right)^{\gamma}=0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
v^{2} & =\frac{2-\sqrt{3}}{\sqrt{3}} 2^{2 \gamma} y_{0}^{2(\gamma+1)} \\
\left(\frac{9}{4}+y_{0}^{2}\right)^{\gamma} & =(2-\sqrt{3})^{2}\left(2 y_{0}\right)^{2 \gamma}
\end{aligned}
$$

$$
c_{14}=0 \Leftrightarrow \gamma=\frac{32 y_{0}^{2}\left(4 y_{0}^{2}+9\right)}{16(6-\sqrt{3}) y_{0}^{4}+216 y_{0}^{2}-27 \sqrt{3}} .
$$

Finally, we get two equations for y_{0}.

$$
\begin{aligned}
c_{34}=0 \Leftrightarrow f\left(y_{0}\right) & =1024(-59+34 \sqrt{3}) y_{0}^{10}-768(-1205+696 \sqrt{3}) y_{0}^{8} \\
& -384(-11115+6418 \sqrt{3}) y_{0}^{6}-864(-6249+3608 \sqrt{3}) y_{0}^{4} \\
& -972(-1971+1138 \sqrt{3}) y_{0}^{2}-2187(-97+56 \sqrt{3}) \\
& =0 . \\
c_{16}=0 \Leftrightarrow g\left(y_{0}\right) & =262144(-136946+79063 \sqrt{3}) y_{0}^{18}+589824(-271018+156463 \sqrt{3}) y_{0}^{16} \\
& -393216(-20856+12083 \sqrt{3}) y_{0}^{14}-1769472(-709799+409818 \sqrt{3}) y_{0}^{12} \\
& -497664(-5651186+3262795 \sqrt{3}) y_{0}^{10}-5598720(-448730+259083 \sqrt{3}) y_{0}^{8} \\
& -20155392(-45337+26176 \sqrt{3}) y_{0}^{6}-7558272(-17492+10097 \sqrt{3}) y_{0}^{4} \\
& -6377292(-1106+639 \sqrt{3}) y_{0}^{2}-14348907(-26+15 \sqrt{3}) \\
& =0 .
\end{aligned}
$$

The two equations $f\left(y_{0}\right)=0$ and $g\left(y_{0}\right)=0$ must have common solution y_{0}. But ...

But the resultant $R\left(f\left(y_{0}\right), g\left(y_{0}\right)\right)$ has value $R\left(f\left(y_{0}\right), g\left(y_{0}\right)\right)=(4817931$

87108301006358074282
44143727724765214133
27137508586702543977
96226702497878148916
80417729645052428288
-2781634
26270705319594515840
03250734975148633067
42568006451267502319
32010354653986355344
$76857109081311150080 \sqrt{3})^{2}$
$=\left(-6.0347161337844731247 \times 10^{51}\right)^{2}$
$\neq 0$.
Therefore, there is no solution for $f\left(y_{0}\right)=0$ and $g\left(y_{0}\right)=0$.

Therefore, there is no figure-eight solution whose orbit is $\left(x^{2}+\mu^{2} y^{2}\right)^{2}=x^{2}-\mu^{2} y^{2}$ and satisfy the equation of motion

$$
\frac{d^{2} q_{i}(t)}{d t^{2}}=\sum_{j}\left(q_{j}-q_{i}\right)\left|q_{j}-q_{i}\right|^{2 \gamma}, \text { with } \gamma \in \mathbb{R}
$$

Conclusion

Quartic

homogeneous U

1. Quartic curve that can support figure-eight is only the lemniscate $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$ and $x \rightarrow \lambda x, y \rightarrow \mu y$.
2. The lemniscate and its scale variant cannot support the figure-eight under the homogeneous potential $\frac{1}{\alpha} \sum r_{i j}^{\alpha}$ or $\sum \ln r_{i j}$.
3. Therefore, no quartic curve support figure-eight solution the homogeneous potential.

Thank you!

