Synchronised Triangles in the figure-eight solution under $1 / r^{\wedge} 2$ potential
 T. Fujiwara with

H. Fukuda, A. Kameyama, H. Ozaki and M. Yamada

March 2, 2004 Hakone

Contents

- Three tangents theorem (with Fukuda and Ozaki)
- Three-body choreography on the lemniscate (with Fukuda and Ozaki)
- Inconstancy of the moment of inertia (with Fukuda and Ozaki)
- Convexity of each lobe (with Montgomery)
- Synchronised triangles in the figure eight solution under 1/r^2 potential.

Three-Body Figure-Eight Choreography

- C. Moore (1993): finds numerically
- A. Chenciner and R. Montgomery (2000): prove the existence
- C. Simó (2000):
 finds lots of N -body choreography numerically

Three-Body Figure-Eight Choreography

$$
\begin{gathered}
i=1,2,3, m_{i}=1 \\
\ddot{q}_{i}=\sum_{j \neq i} \frac{q_{j}-q_{i}}{\left|q_{j}-q_{i}\right|^{3}}, \\
\left\{\begin{array}{l}
q_{1}(t)=q(t), \\
q_{2}(t)=q(t+T / 3), \\
q_{3}(t)=q(t+2 T / 3),
\end{array}\right. \\
\sum_{i} q_{i}=0, \sum_{i} q_{i} \wedge \dot{q}_{i}=0 .
\end{gathered}
$$

Figure-Eight solution for V_{α}

$$
V_{\alpha}=\left\{\begin{array}{l}
\alpha^{-1} r^{\alpha} \text { for } \alpha \neq 0 \\
\log r \text { for } \alpha=0
\end{array}\right.
$$

Numerical evidence
Moore: Exist for $\alpha<2$
CGMS: Exist for $\alpha<0$ and Stable $\alpha=-1 \pm \epsilon$

Figure-Eight for $-2 \leq \alpha \leq 1, T=1$.

Figure Eight has Zero Angular momentum Why $L=0$?

Total angular momentum is conserved. Therefore,

$$
\begin{gathered}
\sum_{i} q_{i} \wedge \dot{q}_{i}=\sum_{i}<q_{i} \wedge \dot{q}_{i}>=0 . \\
<\bullet>: \text { time average }
\end{gathered}
$$

Then, what does $L=0$ mean?

Three Tangents Theorem (FFO)

Theorem (Three Tangents). If $\sum_{i} p_{i}=0$ and $\sum_{i} q_{i} \wedge p_{i}=0$, then three tangents meet at a point.

Three Tangents Theorem

Theorem (Three Tangents). If $\sum_{i} p_{i}=0$ and $\sum_{i} q_{i} \wedge p_{i}=0$, then three tangents meet at a point.
holds for general masses m_{i}.

$$
m_{1}=1.0, m_{2}=1.1, m_{3}=1.2
$$

Three Tangents Theorem

Theorem (Three Tangents). If $\sum_{i} p_{i}=0$ and $\sum_{i} q_{i} \wedge p_{i}=0$, then three tangents meet at a point.

Proof. Let C_{t} be the crossing point of two tangents p_{1} and p_{2}.

Then, $\sum_{i}\left(q_{i}-C_{t}\right) \wedge p_{i}=0$,
$\left(q_{1}-C_{t}\right) \wedge p_{1}=0$ and
$\left(q_{2}-C_{t}\right) \wedge p_{2}=0$.
$\therefore\left(q_{3}-C_{t}\right) \wedge p_{3}=0$.
$C_{t}=-\frac{\left(q_{i} \wedge p_{i}\right) p_{j}-\left(q_{j} \wedge p_{j}\right) p_{i}}{p_{i} \wedge p_{j}}$
C_{t} : the "Center of Tangents"

Three Tangents Theorem

- Shape of the orbit of Figure Eight $x(t)$ and the orbit $C(t)$ are still unknown.
- Three Tangents Theorem gives a criterion for the orbit.
- For example ...

Simplest Curve: Fourth order polynomial

$$
x^{4}+\alpha x^{2} y^{2}+\beta y^{4}=x^{2}-y^{2}
$$

$\beta=1$
(numerical)

Candidate:

$$
\begin{array}{cc}
\text { Lemniscate } & \left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2} \\
\text { and its scale transform } & x \rightarrow \mu x, y \rightarrow \nu y
\end{array}
$$

Three Body Choreography on the Lemniscate (FFO)

Choreograpgy on the Lemniscate

$$
\begin{gathered}
q(t)=\left(\frac{\operatorname{sn}(t)}{1+\mathrm{cn}^{2}(t)}, \frac{\operatorname{sn}(t) \operatorname{cn}(t)}{1+\mathrm{cn}^{2}(t)}\right) \text { with } k^{2}=\frac{2+\sqrt{3}}{4}, \\
\left\{\begin{array}{l}
q_{1}(t)=q(t) \\
q_{2}(t)=q(t+T / 3), \\
q_{3}(t)=q(t+2 T / 3),
\end{array}\right.
\end{gathered}
$$

satisfies the equation of motion $\ddot{q}_{i}=-\frac{\partial}{\partial q_{i}} U$ with

$$
U=\sum_{i<j}\left(\frac{1}{2} \ln r_{i j}-\frac{\sqrt{3}}{24} r_{i j}^{2}\right) .
$$

Potential Energy

$$
V=\sum_{i<j} V_{i j}, \quad V_{i j}=\frac{1}{2} \ln r_{i j}-\frac{\sqrt{3}}{24} r_{i j}^{2}
$$

$V_{12}+V_{13}$

V_{12}

Inconstancy of

the Moment of Inertia

 (FFO)Moment of inertia $I=\sum_{i} q_{i}^{2}$.
Potential energy

$$
V_{\alpha}= \begin{cases}\frac{r^{\alpha}}{\alpha} & \text { for } \alpha \neq 0 \\ \log r & \text { for } \alpha=0\end{cases}
$$

Problem (Chenciner). Show that the moment of inertia I stays constant if and only if $\alpha=-2$.

$$
\frac{\Delta I}{I} \sim \frac{1}{200} \text { for } \alpha=-1
$$

Why $1 / r \wedge 2$ so special?

 Lagrange-Jacobi identity$$
\begin{aligned}
& I=\sum_{i} q_{i}^{2}, K=\sum_{i} \dot{q}_{i}^{2}, V_{\alpha}=\frac{1}{\alpha} \sum_{i<j} r_{i j}^{\alpha}, \\
& H=\frac{1}{2} K+V_{\alpha} . \\
& \Rightarrow \frac{d^{2} I}{d t^{2}}=2 K-2 \alpha V_{\alpha}=4 E-2(2+\alpha) V_{\alpha}
\end{aligned}
$$

For $\alpha=-2$,

$$
\begin{aligned}
& \frac{d^{2} I}{d t^{2}}=4 E \Rightarrow I=2 E t^{2}+c_{1} t+c_{2} \\
& \therefore I=\text { const., if } E=0, \frac{d I}{d t}(0)=c_{1}=0
\end{aligned}
$$

Convexity of Each Lobe (FM)

Theorem (FM). Each lobe of the eight solution is a convex curve.

$$
\kappa=\frac{\dot{q} \wedge \ddot{q}}{|\dot{q}|^{3}}=0 \Leftrightarrow q=0
$$

Computer assisted proof:
T. Kapela \& P. Zgliczyński

After my talk
 at Math Seminar，Kyoto Univ．， a man came to me and said

 ＂ 3 法線も一点で交わりませんか？＂（＂Three normal lines meet at a point，don＇t they？＂）

I said "No, they don't."

(Because I know they don't meet by simulations.)

Then,

Kameyama Pointed out ...

"They meet at a point for Isosceles and Eular configurations."

On my way home, I have a lot of time to consider...

- Why the three normals do not meet at a point?
- What will happen if they meet at a point?
- What is the differences between tangents and normals?
- etc...

Three Normals Theorem

Theorem (Three Normals). If
$\sum_{i} p_{i}=0$ and $\sum_{i} q_{i} \cdot p_{i}=0$, then three normals meet at a point.

Proof. Let C_{n} be the crossing point of two normals to q_{1} and q_{2}.

Then, $\sum_{i}\left(q_{i}-C_{n}\right) \cdot p_{i}=0$,
$\left(q_{1}-C_{n}\right) \cdot p_{1}=0$ and
$\left(q_{2}-C_{n}\right) \cdot p_{2}=0$.
$\therefore\left(q_{3}-C_{n}\right) \cdot p_{3}=0$.
holds for general masses m_{i}.
C_{n} : the "Center of Normals"

Then,
Yamada noticed that ...

Circumcircle Theorem

Theorem (CircumCircle). If
$\sum_{i} p_{i}=0, \sum_{i} q_{i} \wedge p_{i}=0$ and $\sum_{i} q_{i} \cdot p_{i}=0$, then C_{t} and C_{n} are the end points of a diameter of the circumcircle for the triangle $q_{1} q_{2} q_{3}$.

Proof. Angles $C_{t} q_{i} C_{n}$ are 90 degrees for $i=1,2,3$.
holds for any masses m_{i}.

Centres for

figure-eight solution

 under $1 / r \wedge 2$ potential$$
I=\text { const., } L=0
$$

Purple circle: Circumcircle. Purple point: Circumcenter.
Yellow point: Center of force. Small eight: Orbit of center of force.

Centres for

figure-eight solution

 under $1 / r \wedge 2$ potential$$
I=\text { const., } L=0
$$

What does this mean ?...

Synchronised Triangles for figure-eight under $1 / r \wedge 2$

($80,0.855161$ \}

$$
q_{i}^{\prime}=\frac{q_{i}}{\sqrt{I}} \quad m_{i}=1 \quad p_{i}^{\prime}=\frac{p_{j}-p_{k}}{\sqrt{3 K}}
$$

$$
(i, j, k)=(1,2,3),(2,3,1),(3,1,2)
$$

Two triangles are congruent with reverse orientation.

Because ...

Similar Triangles in q \& p space

Theorem (Similar Triangles). If $\sum_{i} p_{i}=0, \sum_{i} q_{i} \wedge p_{i}=0$ and $\sum_{i} q_{i} \cdot p_{i}=0$, then triangle whose vetices are q_{i} and triangle whose perimeters are p_{i} are similar
with reverse orientation.
Proof. Look at the angles yellow colored and red colored.
It is obvious.
Remark: This theorem holds for any masses m_{i}

Ratio

$$
\begin{gathered}
k(t)=\frac{\left|p_{1}\right|}{\left|q_{2}-q_{3}\right|}=\frac{\left|p_{2}\right|}{\left|q_{3}-q_{1}\right|}=\frac{\left|p_{3}\right|}{\left|q_{1}-q_{2}\right|} \\
\therefore \frac{k(t)^{2}}{m_{1} m_{2} m_{3}}=\frac{p_{1}^{2} / m_{1}}{m_{2} m_{3}\left(q_{2}-q_{3}\right)^{2}}=\frac{p_{2}^{2} / m_{2}}{m_{3} m_{1}\left(q_{3}-q_{1}\right)^{2}}=\frac{p_{3}^{2} / m_{3}}{m_{1} m_{2}\left(q_{1}-q_{2}\right)^{2}}=\frac{K}{M I} \\
\quad \therefore k(t)=\sqrt{\frac{m_{1} m_{2} m_{3} K}{M I}} \\
\text { where } \quad 2 \quad p_{k}^{2} / m_{k}
\end{gathered}
$$

Similarity in q-v space

Equations we have used are

$$
\begin{aligned}
& \sum_{i} m_{i} q_{i}=0, \quad \sum_{i} m_{i} v_{i}=0 \\
& \sum_{i} m_{i} q_{i} \cdot v_{i}=0, \quad \sum_{i} m_{i} q_{i} \wedge v_{i}=0
\end{aligned}
$$

We have the following three equivalent relations

$$
\begin{aligned}
& \frac{m_{i} m_{j}\left(q_{i}-q_{j}\right)^{2}}{M I}=\frac{m_{k} v_{k}^{2}}{K}, \frac{m_{k} q_{k}^{2}}{I}=\frac{m_{i} m_{j}\left(v_{i}-v_{j}\right)^{2}}{M K} \\
& \frac{m_{k} q_{k}^{2}}{I}+\frac{m_{k} v_{k}^{2}}{K}=\frac{m_{i} m_{j}\left(q_{i}-q_{j}\right)^{2}}{M I}+\frac{m_{i} m_{j}\left(v_{i}-v_{j}\right)^{2}}{M K} \\
&=\frac{m_{i}+m_{j}}{M} \\
&(i, j, k)=(1,2,3),(2,3,1),(3,1,2)
\end{aligned}
$$

Area

$$
\begin{aligned}
p_{1} \wedge p_{2} & =-k^{2}\left(q_{2}-q_{1}\right) \wedge\left(q_{3}-q_{1}\right) \\
& =-\frac{K}{M I} m_{1} m_{2} m_{3}\left(q_{1} \wedge q_{2}+q_{2} \wedge q_{3}+q_{3} \wedge q_{1}\right) \\
& =-\frac{K}{I} m_{1} m_{2} q_{1} \wedge q_{2}
\end{aligned}
$$

$\because \sum_{i} m_{i} q_{i}=0 \Rightarrow m_{1} m_{2} q_{1} \wedge q_{2}=m_{2} m_{3} q_{2} \wedge q_{3}=m_{3} m_{1} q_{3} \wedge q_{1}$.

Therefore, we get

$$
\frac{q_{i} \wedge q_{j}}{I}+\frac{v_{i} \wedge v_{j}}{K}=0
$$

Energy balance for the orbits under homogeneous potentials

$$
\frac{d^{2} I}{d t^{2}}=0 \Rightarrow \sum_{k} \frac{p_{k}^{2}}{m_{k}}=\sum_{i<j} m_{i} m_{j} r_{i j}^{\alpha}
$$

So far, we do not use the explicit form of the potential.
We assumed only the existence the orbits

$$
\text { with } \mathrm{L}=0 \text { and } \mathrm{dl} / \mathrm{dt}=0 \text {. }
$$

What will happen for orbits under $1 / \mathrm{r} \wedge 2$ potential?
What will happen if $\mathrm{L}=0$ and $\mathrm{dl} / \mathrm{dt}=0$ orbits are allowed under the other homogeneous potentials?

Energy balance for the orbits under $1 / r \wedge 2$

$$
\begin{gathered}
\frac{d^{2} I}{d t^{2}}=0 \Rightarrow K=\sum_{i<j} \frac{m_{i} m_{j}}{r_{i j}^{2}} \\
L=0, \quad \frac{d I}{d t}=0 \Rightarrow \frac{1}{r_{i j}^{2}}=\frac{m_{1} m_{2} m_{3} K}{M I} \frac{1}{p_{k}^{2}} .
\end{gathered}
$$

$$
\therefore K=\frac{m_{1} m_{2} m_{3} K}{M I}\left(\frac{m_{1} m_{2}}{p_{3}^{2}}+\frac{m_{2} m_{3}}{p_{1}^{2}}+\frac{m_{3} m_{1}}{p_{2}^{2}}\right)
$$

$$
\therefore \frac{m_{1} m_{2}}{p_{3}^{2}}+\frac{m_{2} m_{3}}{p_{1}^{2}}+\frac{m_{3} m_{1}}{p_{2}^{2}}=\frac{M I}{m_{1} m_{2} m_{3}}=\text { const. }
$$

Energy balance for the orbits under log r

$$
\begin{gathered}
\frac{d^{2} I}{d t^{2}}=0 \Rightarrow \quad K=\sum_{k} \frac{p_{k}^{2}}{m_{k}}=\sum_{i<j} m_{i} m_{j} \\
V_{0}=\sum_{i<j} m_{i} m_{j} \log r_{i j}=E-\frac{1}{2} \sum_{i<j} m_{i} m_{j} \\
\therefore L=0, \quad \frac{d I}{d t}=0 \Rightarrow \sum_{i j k} m_{i} m_{j} \log \left|p_{k}\right|=E+\frac{1}{2} \log \frac{m_{1} m_{2} m_{3} K}{M I}
\end{gathered}
$$

Energy balance for the orbits under other homogeneous potentials

For $\alpha \neq 0,-2$,

$$
\frac{d^{2} I}{d t^{2}}=0 \Rightarrow K=\sum_{k} \frac{p_{k}^{2}}{m_{k}}=\sum_{i<j} m_{i} m_{j} r_{i j}^{\alpha}=\frac{\alpha E}{2+\alpha}
$$

$$
L=0, \quad \frac{d I}{d t}=0 \Rightarrow \sum_{i j k} m_{i} m_{j}\left|p_{k}\right|^{\alpha}=K\left(\frac{m_{1} m_{2} m_{3} K}{M I}\right)^{\frac{\alpha}{2}}=\mathrm{const} .
$$

\Rightarrow Conceptional proof of the "Chenciner's Problem"?
"No figure-eight with $I=$ const. exept for $\alpha=-2$ ".

Conclusion 1:

Synchronised Triangles for I=const., L=0 orbit.

$$
\begin{aligned}
\frac{m_{i} m_{j}\left(q_{i}-q_{j}\right)^{2}}{M I} & =\frac{m_{k} v_{k}^{2}}{K}, \frac{m_{k} q_{k}^{2}}{I}=\frac{m_{i} m_{j}\left(v_{i}-v_{j}\right)^{2}}{M K} \\
\frac{m_{k} q_{k}^{2}}{I}+\frac{m_{k} v_{k}^{2}}{K} & =\frac{m_{i} m_{j}\left(q_{i}-q_{j}\right)^{2}}{M I}+\frac{m_{i} m_{j}\left(v_{i}-v_{j}\right)^{2}}{M K} \\
& =\frac{m_{i}+m_{j}}{M} \\
\frac{q_{i} \wedge q_{j}}{I} & +\frac{v_{i} \wedge v_{j}}{K}=0
\end{aligned}
$$

$$
\sum_{i j k} m_{i} m_{j}\left|p_{k}\right|^{\alpha}=\text { const. }
$$

Conclusion 2:

Synchronised Triangles for figure-eight under $1 /{ }^{\wedge} \wedge 2$

\{0, 0.\}
\{0, 0.\}

$$
q_{i}^{\prime}=\frac{q_{i}}{\sqrt{I}} \quad m_{i}=1 \quad p_{i}^{\prime}=\frac{p_{j}-p_{k}}{\sqrt{3 K}}
$$

Two triangles are congruent with reverse orientation.

$$
\sum_{i} \frac{1}{p_{i}^{2}}=3 I
$$

I have a dream.

 One day, someone mail me
\{20, 0.21379\}
 > and say "Finally, and say and say
 ca, "Finally, "Finally,
 I have solved the figure-eight !"

Thank you.

