Motion in shape for
planar three-body
problem

T. Fujiwara, H. Fukuda, H. Ozaki
and T. Taniguchi
2011/09/02 Osaka

Saari’s conjecture

for 3-body:
Euler-Lagrange circle solution
& I =3 my|q|* = constant.

Saari’s conjecture

In N-body problem,
i kalqu = constant,
the motion is relative equilibrium. (1970)

35 years after,
Moeckel proved ...

A Proof of Saari’s Conjecture for the Three-Body Problem
in R? (May 20, 2005)

April 7, 2005 at Saarifest 2005, Guanajuato, Mexico




The next day, Saari
extended his conjecture

If configurational measure y = I*/? U = constant,
then the motion is homographic.
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April 8, 2005 at Saarifest 2005, Guanajuato, Mexico

Saari’s
extended conjecture

If configurational measure y = /> U = constant,
then the motion is homographic.

Hereafter, we call this conjecture
“Saari’s homographic conjecture”
or simply
13 :) % »

Saari’s conjecture”.

now, Saari’s conjecture contains ...

Saari and Extended Saari
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Lagrange-Jacobi [ = 4E +

fora #2
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for a =2 .
I =0 doesn’t mean U =0 or 1 = 0.
there are counter examples of the original Saari’s conjecture

a=2
extended Saari is

expected to be
true for any a

/ there are counter
examples for
original Saari

Lagrange solution
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Euler solution

the shape is unchanged

figure-eight solution
under 1/r*2 potential

pu(t)

figure-eight solution
Newton potential

p(t)

qx(t) % =13.535... < u(t) < 3.745...
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Saari’s conjecture

!
pay attention to
Shape variable

~ what is the Shape variable ?

< equation of motion for the Shape variable ?




Degree of freedom

¢,92,93 € C=6

center of mass = 2
size = 1
rotation = 1

*. shape = 2

The Shape variable

Jacobi variables:
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Shape variable

January 18, 2011, I received a mail from Richard
Montgomery with an unpublished preprint
written in 2007.

In the preprint, Moeckel and Montgomery ...

~ the Shape variable for Planar 3-body,
~ the Lagrangian,

+ the equations of motion.

geometric interpretation
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The Shape variable
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Angular momentum
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Decomposition of Kinetic energy
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kinetic energy for size + rotation + shape

Lagrangian
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by a few lines calculations, we get
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: Saar’s relation
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kinetic energy for the shape motion
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Saari’s relation
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comes from the structure of the Kinetic energy
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{ax} — {r, si} = {size, other variables}

= for N-body, any masses, in any dimension
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Therefore, the Saari’s relation
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Saari’s conjecture
for planar
my — 1,
3-body problem

under — potential
/r-Oé

Fujiwara, Fukuda, Ozaki & Taniguchi, 2011

We will show that ...

motion along a contour is
not compatible to the equations of motion
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Saari’s conjecture for ...
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Saari’s conjecture claims that
only k = 0 is possible.
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motion along a contour
with constant speed

p: radius of the curvature

d*x

we have two expressions for —

ds?

from p = constant,

and from equation of motion

They must be the same
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C': angular momentum,
k: constant speed
€ = £1: direction of the motion
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motion along a contour

with constant speed Motion is determined by u completely.

Let a=2. Because...
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For a = 2, this term is constant.
This equation gives a condition for x and vy,
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on the other hand, p = pg gives another condition for a = 2,
Q2,12 o) =27 + 642® + 15632 + 208y* + 641/°

+ 482 (3 +4y?) + 427 (27 + 88y* + 48y")

(64514 4+ 0 -40)

=0.

25 conditions ¢, = 0
for only 3 parameters C2, k? and .

actually, we can show that
there are no parameters that satisfy

Cos =Cp3 =Cop =10

therefore, no such arc with P =@ =0
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i This completes a proof
of the Saari’s conjecture

we can prove finite arc () = 0 must have finite interval of x

= P(z*,9?,C*k*) =0 and Q(z* 4 o) =0
must be satisfied in an finite interval of
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eliminating y using

Resultant[P, Q, y*] = R(x* C* k%, o)
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for only 3 parameters C2, k? and .

Summary




The Shape variable
Moeckel and Montgomery, 2007
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by showing that ...
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However, this is
incompatible with the equation of motion.




Now, we ...

Figure-eight solution ...
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Thank ' you

have shape variable (




