Bifurcations of Figure-eight solutions — Bifurcations and Symmetry —

T. Fujiwara, H. Fukuda, H. Ozaki

2020 March 11 SaariFest2020, Puebla, México

the figure-eight(1993,2000)

bifurcations V

$$V = \frac{1}{ar^a}, \ a > -2.$$

 $\Theta_{3} + 2j\pi/3 + k\pi \quad j = 0, \text{ 10ne-side: } a_{0} = 1.3424 < a$ $f_{C} vo \text{ different solutions emerge}$ from this bifurcation point(x, y, v, l) = (0.16872, 0.111) $\hat{C}_{f1}(t) = 88742 \text{ (control of 0/35)} + 33 \text{ (control of 0/3$

and my big question or a strong desire is …

Who has seen the Action?

Lagrangian and Action: $S = \int dt L$

a stationary point $\delta S = 0$

a solution of the equation of motion

variational method: local minimum of S $\Rightarrow \delta S = 0$

Who has seen the Action?

if the action were a function of one variable

 $x \equiv 0$

 $s(x) = s(0) + s'(0)x + s''(0)x^2/2 + s'''(0)x^3/3! + \dots$

bother stationary point

difficity: distance to the other solution is large bifurcatios: distance $\rightarrow 0$

Necessary condition

if two stationary points meet

 $\delta S(q_o) = \delta S(q_o + R\Phi) = 0 \rightarrow \delta^2 S(q_o) = 0 \text{ for } R \rightarrow 0$

 $\mathcal{H}\Phi = O(R) \to 0 \text{ for } R \to 0$ **linearised equations of motion** namely, one eigenvalue $\to 0$ $\mathcal{H} = -m\frac{d^2}{dt^2} + \frac{\partial^2 U}{\partial^2 a}$

Eigenvalues and eigenfunctions of Hessian

the eigenvalues and eigenfunctions of \mathcal{H} are classified by the irreducible representations of G

 $g \in G$

S[gq] = S[q] for any $q(t+T) = q(t), gq_o = q_o$ for solution q_o

Group Theoretic Methods in Bifurcation Theory

Sattinger 1979

Group theoretic methods in bifurcation theory

Golubitsky and Scaeffer 1985

Singularities and groups in bifurcation theory I & II

Chenciner, Féjoz, and Montgomery 2004 Fotating Eights: I. The three Γi families.

Irreducible representations of D_n

Symmetry of the reduced action

for
$$g \in G$$
: $S[gq] = S[q], gq_o = q_o$

for one dimensional representations $S_{LS}(r)$: a function of rif $g\phi = -\phi \Rightarrow S_{LS}(-r) = S_{LS}(r)$

for two dimensional representations

$$S_{LS}(r,\theta) : \text{a function of } r \text{ and } \theta$$
$$r\phi(\theta) = r\cos(\theta)\phi_1 + r\sin(\theta)\phi_2$$
$$\text{if } g(r\phi(\theta)) = r'\phi(\theta') \to S_{LS}(r',\theta') = S_{LS}(r,\theta)$$

bifurcations

for trivial representation κ is not degenerate

bifurcations

for other one dimensional representations

 κ is not degenerate

a two dimensional representation

 κ is doubly degenerate

 $D_3: S_{LS}(r,\theta \pm 2\pi/3) = S_{LS}(r,\theta), S_{LS}(r,-\theta) = S_{LS}(r,\theta).$

bifurcation of the figure-eight

 $D_3: S_{LS}(r,\theta \pm 2\pi/3) = S_{LS}(r,\theta), S_{LS}(r,-\theta) = S_{LS}(r,\theta).$

$$S_{\rm LS}(r,\theta) = \frac{\kappa}{2}r^2 + \frac{A_3}{3!}r^3\cos(3\theta) + \frac{A_4}{4!}r^4 + O(r^5).$$

another two dimensional representation $D_6: S_{LS}(r, \theta + 2\pi k/6) = S_{LS}(r, \theta), \ S_{LS}(r, -\theta) = S_{LS}(r, \theta)$ the faithful representation of D_6 $S_{\rm LS}(r,\theta) = \frac{\kappa}{2}r^2 + \frac{A_4}{A!}r^4 + \frac{1}{3!}r^3 \left(A_{6+}\cos(3\theta)^2 + A_{6-}\sin(3\theta)^2\right)$ $+O(r^{8})$ $a_0 = 1.34$ •:local max, 🗡:saddle •:figure-eight, 18

D₆: six irreducible representations and bifurcations of figure-eights

Pattern	$\mathcal{P_C}'$	\mathcal{M}'	\mathcal{S}'	$\mid d$	a for U_h	T for U_{LJ}		Symmetry	Type
						α_{-}	α_+		
Ι	1	1	1	1		14.479	14.479	X- and Y -axis	fold
II	1	1	-1	1			17.132	Y-axis	one-side
III	1	-1	1	1			18.615	O^{b}	one-side
IV	1	-1	-1	1	-0.2142	14.595		X-axis	one-side
V	0	1	± 1	2	0.9966	14.836	16.878	X- and Y -axis	both-sides
VI	0	-1	± 1	2	1.3424	14.861	16.111	$O^{\rm b}$ or a X-axis	double ^a one-side

Period k bifurcations of figure-eight solutions

for orignal:
$$D_6 = \langle x, y : x^6 = y^2 = 1, xy = yx^{-1} \rangle$$

 $x^6 q(t) = q(t+T) \Rightarrow x^6 = 1$
for period k bifurcations:
 T 27 kT
extends the functions space
 $\delta q(t+kT) = \delta q(t)$

$$x^{6k}q(t) = q(t+kT) \Rightarrow x^{6k} = 1$$

 $D_{6k} = \langle x, y : x^{6k} = y^2 = 1, xy = yx^{-1} \rangle$

for period 5 bifurcations of figure-eights $D_{30} = \langle x, y : x^{30} = y^2 = 1, xy = yx^{-1} \rangle$

period k bifurcations of D₁

$$D_1 = \{1, S\}, Sq(t) \sim q(-t)$$
$$Rq(t) = q(t+T)$$

for period k bifurcations: $\delta q(t + kT) = \delta q(t) \Rightarrow R^k = 1$

$$D_k = \{R, S : R^k = S^2 = 1, RS = SR^{-1}\}$$

R symmetry is broken

period k bifurcation

period 3 bifurcations of D₁

$$D_3 = \{R, S : R^3 = S^2 = 1, RS = SR^{-1}\}$$

$$S_{\rm LS}(r,\theta) = \frac{\kappa}{2}r^2 + \frac{A_3}{3!}r^3\cos(3\theta) + \frac{A_4}{4!}r^4 + O(r^5).$$

period 4 bifurcations of D₁

$$D_4 = \{R, S : R^4 = S^2 = 1, RS = SR^{-1}\}$$

 $S_{\rm LS}(r,\theta) = \frac{\kappa}{2}r^2 + \frac{r^4}{4!}(a_4 + b_4\cos(4\theta)) + O(r^6).$

case 1:

period 4 bifurcations of D_1 $D_4 = \{R, S : R^4 = S^2 = 1, RS = SR^{-1}\}$ $S_{\rm LS}(r,\theta) = \frac{\kappa}{2}r^2 + \frac{r^4}{4!}(a_4 + b_4\cos(4\theta)) + O(r^6).$ 0.5 0.0 case 2: -0.5 -1.0 -1.0 0.0 0.5 -1.0 -0.5 -0.5 1.0 1.0 one side the other side bifurcated solutions are saddle

one side

Summary

Variational principle + group theory

$$S_{LS}(r,\theta) = S[q_o + r\phi(\theta) + r\sum_{\alpha} \epsilon_{\alpha}(r,\theta)\psi_{\alpha}] - S[q_o]$$
$$\mathcal{H}\phi(\theta) = \kappa\phi(\theta) : \kappa \to 0 \Leftrightarrow \text{a bifurcation}$$

Irreducible representations of group G determine bifurcation patterns

Hessian & Lyapunov-Schmidt reduced action

Symmetry: $g(r\phi(\theta)) = r'\phi(\theta') \Rightarrow S_{LS}(r',\theta') = S_{LS}(r,s)$

Bifurcations & Symmetry breaking

Explains bifurcations of figure-eights, period k bifurcations of D_1

no considerations for stability

Who has seen the Action?

Neither I nor you: But near the bifurcation points You and I are seeing the Lyapunov-Schmidt reduced Action

be careful! it is NOT full action

Who has seen the Wind? by CHRISTINA ROSSETTI

Who has seen the wind? Neither I nor you: But when the leaves hang trembling, The wind is passing through.

Who has seen the wind? Neither you nor I: But when the trees bow down their heads, The wind is passing by.

the action of the Simó's H is greater than that of the figure-eight

the values of action for T = 1

*1 and *2 are directly calculated by the integration along the numerical solution

$$S = \int_0^T dt \left(\sum_{k=1,2,3} \frac{1}{2} |\dot{q}_k|^2 + \sum_{i < j} \frac{1}{r_{ij}} \right)$$

*3 is calculated by S = -3ET, where *E* is the energy and T = 1 is the period. Since this is determined by the initial conditions, accuracy of this value is high.