Bifurcations of

Figure-eight solutions

 - Bifurcations and Symmetry

 - Bifurcations and Symmetry}
T. Fujiwara, H. Fukuda, H. Ozaki

2020 March 11
SaariFest2020, Puebla, México

the figure-eight $(1993,2000)$

Simó's H

$a=1$ (Newton potential)

bifurcations
 $$
V=\frac{1}{a r^{a}}, a>-2
$$

Simó's H: $a_{0}=0.9966 \quad$ both $a<a_{0}$ and $a_{0}<a$

one side: $a_{0}=1.3424<a$ two different solutions emerge from this bifurcation point

Bifurcations of figure-eight solutions Lennard-Jones potential

$$
V \sim \frac{1}{r^{6}}-\frac{1}{r^{12}}, T>T_{0}
$$

one bifurcation point:

Fukuda, Fujiwara and Ozaki 2019

Bifurcations of figure-eight solutions

6 bifurcation patterns
5 patterns \leftrightarrows Symmetry breaking
Does not depend on potential or parameter why 6 patterns? any more or not?

Who has seen the Action?

Lagrangian and Action: $\quad S=\int d t L$

a stationary point $\delta S=0$
a solution of the equation of motion
variational method: local minimum of S

$$
\Rightarrow \delta S=0
$$

Who has seen the Action?

higher derivatives of the action of a solution

 $\delta^{2} S\left(q_{\mathrm{o}}\right), \delta^{3} S\left(q_{\mathrm{o}}\right), \delta^{4} S\left(q_{\mathrm{o}}\right), \ldots$ action around this solutionif the action were a function of one variable

$$
s(x)=s(0)+s^{\prime}(0) x+s^{\prime \prime}(0) x^{2} / 2+s^{\prime \prime \prime}(0) x^{3} / 3!+\ldots
$$

difficlty: distance to the other solution is large bifurcatios: distance $\rightarrow 0$

Necessary condition

 if two stationary points meet$$
\delta S\left(q_{o}\right)=\delta S\left(q_{o}+R \Phi\right)=0 \rightarrow \delta^{2} S\left(q_{o}\right)=0 \text { for } R \rightarrow 0
$$

$$
\int m \frac{d^{2}}{d t^{2}} q_{o}=\frac{\partial U\left(q_{o}\right)}{\partial q}
$$

$$
m \frac{d^{2}}{d t^{2}}\left(q_{o}+R \Phi\right)=\frac{\partial U\left(q_{o}+R \Phi\right)}{\partial q}
$$

$$
=\frac{\partial U\left(q_{o}\right)}{\partial q}+R \frac{\partial^{2} U\left(q_{o}\right)}{\partial q^{2}} \Phi+O\left(R^{2}\right)
$$

$\mathcal{H} \Phi=O(R) \rightarrow 0$ for $R \rightarrow 0$
linearised equations of motion
namely, one eigenvalue $\rightarrow 0$

$$
\mathcal{H}=-m \frac{d^{2}}{d t^{2}}+\frac{\partial^{2} U}{\partial^{2} q}
$$

Eigenvalues and eigenfunctions of Hessian

the eigenvalues and eigenfunctions of \mathcal{H} are classified by
the irreducible representations of G

$$
g \in G
$$

$S[g q]=S[q]$ for any $q(t+T)=q(t), g q_{o}=q_{o}$ for solution q_{o}

Lyapunov-Schmidt reduction

$$
\mathcal{H} \phi=\kappa \phi, \mathcal{H} \psi_{\alpha}=\lambda_{\alpha} \psi_{\alpha}
$$

stationary point: $\frac{d S_{\mathrm{LS}}(r)}{d r}=0$ original or bifurcated solution(s)

Group Theoretic Methods in Bifurcation Theory

Q Sattinger 1979
\& Group theoretic methods in bifurcation theory
QGolubitsky and Scaeffer 1985
\& Singularities and groups in bifurcation theory I \& II
-Chenciner, Féjoz, and Montgomery 2004
\& Rotating Eights: I. The three Γ i families.

Irreducible representations of D_{n}

figure-eight solutions have

$$
\begin{gathered}
D_{6}=\left\{1, x, x^{2}, \ldots, x^{5}, y, y x, y x^{2}, \ldots, y x^{5},\right\} \\
x^{6}=y^{2}=1, x y=y x^{-1} .
\end{gathered}
$$

Symmetry of the reduced action

$$
\text { for } g \in G: S[g q]=S[q], g q_{o}=q_{o}
$$

for one dimensional representations

$$
\begin{gathered}
S_{L S}(r) \text { : a function of } r \\
\text { if } g \phi=-\phi \Rightarrow S_{L S}(-r)=S_{L S}(r)
\end{gathered}
$$

for two dimensional representations

$$
\begin{gathered}
S_{L S}(r, \theta): \text { a function of } r \text { and } \theta \\
r \phi(\theta)=r \cos (\theta) \phi_{1}+r \sin (\theta) \phi_{2} \\
\text { if } g(r \phi(\theta))=r^{\prime} \phi\left(\theta^{\prime}\right) \rightarrow S_{L S}\left(r^{\prime}, \theta^{\prime}\right)=S_{L S}(r, \theta)
\end{gathered}
$$

bifurcations

for trivial representation
 κ is not degenerate

bifurcations

for other one dimensional representations

$$
\begin{gathered}
\kappa \text { is not degenerate } \\
S_{L S}(-r)=S_{L S}(r) \\
S_{L S}(r)=\frac{\kappa}{2} r^{2}+\frac{A_{4}}{4!} r^{4}+O\left(r^{6}\right), A_{4} \neq 0, A_{3}=A_{5}=\cdots=0
\end{gathered}
$$

example: $\quad A_{4}<0$

a two dimensional representation

κ is doubly degenerate

$$
D_{3}: S_{L S}(r, \theta \pm 2 \pi / 3)=S_{L S}(r, \theta), S_{L S}(r,-\theta)=S_{L S}(r, \theta)
$$

$$
S_{\mathrm{LS}}(r, \theta)=\frac{\kappa}{2} r^{2}+\frac{A_{3}}{3!} r^{3} \cos (3 \theta)+\frac{A_{4}}{4!} r^{4}+O\left(r^{5}\right)
$$

Simó' s H
figure-eight

bifurcation of the figure-eight

$$
D_{3}: S_{L S}(r, \theta \pm 2 \pi / 3)=S_{L S}(r, \theta), S_{L S}(r,-\theta)=S_{L S}(r, \theta)
$$

$$
S_{\mathrm{LS}}(r, \theta)=\frac{\kappa}{2} r^{2}+\frac{A_{3}}{3!} r^{3} \cos (3 \theta)+\frac{A_{4}}{4!} r^{4}+O\left(r^{5}\right)
$$

$$
a_{0}=0.9966
$$

another two dimensional representation

$$
D_{6}: S_{L S}(r, \theta+2 \pi k / 6)=S_{L S}(r, \theta), S_{L S}(r,-\theta)=S_{L S}(r, \theta)
$$

the faithful representation of D_{6}

$$
S_{\mathrm{LS}}(r, \theta)=\frac{\kappa}{2} r^{2}+\frac{A_{4}}{4!} r^{4}+\frac{1}{3!} r^{3}\left(A_{6+} \cos (3 \theta)^{2}+A_{6-} \sin (3 \theta)^{2}\right)
$$

D_{6} : six irreducible representations and bifurcations of figure-eights

Pattern	$\mathcal{P}_{\mathcal{C}}{ }^{\prime}$	\mathcal{M}^{\prime}	\mathcal{S}^{\prime}	d	a for U_{h}	T for $U_{L J}$		Symmetry	Type
						α_{-}	α_{+}		
I	1	1	1	1		14.479	14.479	X - and Y-axis	fold
II	1	1	-1	1			17.132	Y-axis	one-side
III	1	-1	1	1			18.615	O^{b}	one-side
IV	1	-1	-1	1	-0.2142	14.595		X-axis	one-side
V	0	1	± 1	2	0.9966	14.836	16.878	X-and Y-axis	both-sides
VI	0	-1	± 1	2	1.3424	14.861	16.111	O^{b} or $^{\mathrm{a}} X$-axis	double ${ }^{\mathrm{a}}$ one-side

Period k bifurcations of figure-eight solutions

for orignal: $D_{6}=\left\langle x, y: x^{6}=y^{2}=1, x y=y x^{-1}\right\rangle$

$$
x^{6} q(t)=q(t+T) \Rightarrow x^{6}=1
$$

for period k bifurcations:

extends the functions space $\delta q(t+k T)=\delta q(t)$

$$
x^{6 k} q(t)=q(t+k T) \Rightarrow x^{6 k}=1
$$

$$
D_{6 k}=\left\langle x, y: x^{6 k}=y^{2}=1, x y=y x^{-1}\right\rangle
$$

for period 5 bifurcations of figure-eights

$$
D_{30}=\left\langle x, y: x^{30}=y^{2}=1, x y=y x^{-1}\right\rangle
$$

period k bifurcations of D_{1}

$$
\begin{aligned}
D_{1}= & \{1, S\}, S q(t) \sim q(-t) \\
& R q(t)=q(t+T)
\end{aligned}
$$

for period k bifurcations: $\delta q(t+k T)=\delta q(t) \Rightarrow R^{k}=1$

$$
D_{k}=\left\{R, S: R^{k}=S^{2}=1, R S=S R^{-1}\right\}
$$

R symmetry is broken

period k bifurcation

period 3 bifurcations of D_{1}

$$
\begin{gathered}
D_{3}=\left\{R, S: R^{3}=S^{2}=1, R S=S R^{-1}\right\} \\
S_{\mathrm{LS}}(r, \theta)=\frac{\kappa}{2} r^{2}+\frac{A_{3}}{3!} \frac{r^{3} \cos (3 \theta)+\frac{A_{4}}{4!} r^{4}+O\left(r^{5}\right)}{}
\end{gathered}
$$

period 4 bifurcations of D_{1}

$$
\begin{gathered}
D_{4}=\left\{R, S: R^{4}=S^{2}=1, R S=S R^{-1}\right\} \\
S_{\mathrm{LS}}(r, \theta)=\frac{\kappa}{2} r^{2}+\frac{r^{4}}{4!}\left(a_{4}+b_{4} \cos (4 \theta)\right)+O\left(r^{6}\right) .
\end{gathered}
$$

case 1:

period 4 bifurcations of D_{1}

$$
\begin{gathered}
D_{4}=\left\{R, S: R^{4}=S^{2}=1, R S=S R^{-1}\right\} \\
S_{\mathrm{LS}}(r, \theta)=\frac{\kappa}{2} r^{2}+\frac{r^{4}}{4!}\left(a_{4}+b_{4} \cos (4 \theta)\right)+O\left(r^{6}\right)
\end{gathered}
$$

case 2:

the other side

period 5 bifurcations of D_{1}

$$
D_{5}=\left\{R, S: R^{5}=S^{2}=1, R S=S R^{-1}\right\}
$$

Summary

Variational principle + group theory

$$
\begin{gathered}
S_{L S}(r, \theta)=S\left[q_{o}+r \phi(\theta)+r \sum \epsilon_{\alpha}(r, \theta) \psi_{\alpha}\right]-S\left[q_{o}\right] \\
\mathcal{H} \phi(\theta)=\kappa \phi(\theta): \kappa \rightarrow 0 \Leftrightarrow \text { a bifurcation }
\end{gathered}
$$

Irreducible representations of group G determine bifurcation patterns

Hessian \& Lyapunov-Schmidt reduced action

$$
\text { Symmetry: } g(r \phi(\theta))=r^{\prime} \phi\left(\theta^{\prime}\right) \Rightarrow S_{L S}\left(r^{\prime}, \theta^{\prime}\right)=S_{L S}(r, s)
$$

Bifurcations \& Symmetry breaking
Explains bifurcations of figure-eights, period k bifurcations of D_{1}
no considerations for stability

Who has seen the Action?

Neither I nor you:
But near the bifurcation points
You and I are seeing the Lyapunov-Schmidt reduced Action

be careful! it is NOT full action

Who has seen the Wind? by CHRISTINA ROSSETTI

Who has seen the wind?
Neither I nor you:
But when the leaves hang trembling,
The wind is passing through.
Who has seen the wind?
Neither you nor I:
But when the trees bow down their heads, The wind is passing by.

the action of the Simó's H is greater than that of the figure-eight

the values of action for $T=1$

Figure 8
$13.2077823369941007626(* 1)$
$13.2077823369941007252(* 2)$
$13.2077823369940973414(* 3)$

Simo H
$13.2077837668871694251(* 1)$
$13.2077837668871694248(* 2)$
$13.2077837668871692387(* 3)$

$$
\frac{S_{\text {Simó's H }}-S_{\text {figure-eight }}}{S_{\text {figure-eight }}}=1.1 \times 10^{-7}
$$

*1 and *2 are directly calculated by the integration along the numerical solution

$$
S=\int_{0}^{T} d t\left(\sum_{k=1,2,3} \frac{1}{2}\left|\dot{q}_{k}\right|^{2}+\sum_{i<j} \frac{1}{r_{i j}}\right) .
$$

*3 is calculated by $S=-3 E T$, where E is the energy and $T=1$ is the period. Since this is determined by the initial conditions, accuracy of this value is high.

