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1 Preparations

1.1 Cartesian Coordinate and Polar Coordinate in 2 Dimensions

er

eθ

ey

ex

θ

r
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y

Figure 1: Cartesian Coordinate and Polar Coordinate: Unit vectors ex, ey for cartesian coordinate
and er, eθ for polar coordinate.

Position vector x is represented by cartesian coordinate

x = xex + yey == r(cos θ ex + sin θ ey), (1)

whereas represented by polar coordinate

x = rer. (2)

Unit vectors for polar coordinate are defined as follows,

er = cos θ ex + sin θ ey, (3)
eθ = − sin θ ex + cos θ ey. (4)

Suppose that the position is represented by a parameter. Then orbit x represents a curve and x,
r, θ, er and eθ are functions of the parameter. Derivative of them by the parameter are

ėr = θ̇(− sin θ ex + cos θ ey) = θ̇eθ, (5)
ėθ = θ̇(− cos θ ex − sin θ ey) = −θ̇er, (6)
ẋ = ṙer + rθ̇eθ, (7)
ẍ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ. (8)

where dot above symbols represents derivative of them by the parameter.

If the parameter is identified, we will write the derivative explicitly by this parameter. For example,
if the parameter is the time, the velocity v and the acceleration a are given by

v =
dx
dt

=
dr

dt
er + r

dθ

dt
eθ (9)

a =
d2x
dt2

=

(
d2r

dt2
− r

(
dθ

dt

)2
)

er +
(

2
dr

dt

dθ

dt
+ r

d2θ

dt2

)
eθ. (10)
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Another useful example is to take the angle θ as the parameter. In this case,

dx
dθ

=
dr

dθ
er + reθ (11)

d2x
dθ2

=
(

d2r

dθ2
− r

)
er + 2

dr

dθ
eθ. (12)

1.2 Tangent Vector, Principal Normal Vector and the Curvature for 2 Dimen-
sional Curve

et
en

Figure 2: et and en.

We can take the length s along the curve from some point as the parameter. Then, dx/ds is a
vector with unit length and tangent to the curve. We write this vector et,

et =
dx
ds

. (13)

Second derivative of x with respective to s is not a unit vector in general. The length of this vector
is called the curvature. We write the curvature 1/ρ,

det

ds
=

1
ρ
en, (14)

where the vector en is called principal normal vector. ρ is called radius of curvature.

Since 0 = d(e2
t )/ds = 2et · en/ρ, principal normal vector en is perpendicular to tangent vector et,

et · en = 0. (15)

We take the direction of en such as et and en form a right-hand coordinate. (See fig. 1.2)

Differentiating this equation by s, we get

0 =
det

ds
· en + et · den

ds
=

1
ρ

+ et · den

ds
. (16)

On the other hand, since 0 = d(e2
n)/ds = 2en · den/ds, den/ds is proportional to the vector et in 2

dimensions. Therefore, we get
den

ds
= −1

ρ
et. (17)

Equations (14) and (17) are the Serret-Frenet formulas for 2 dimensional curve.
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Using a general parameter,

ẋ = ṡ
dx
ds

= ṡet (18)

ẍ = s̈et + ṡėt = s̈et + ṡ2 det

ds
= s̈et +

ṡ2

ρ
en. (19)

Thus, we get

ẋ× ẍ =
ṡ3

ρ
et × en. (20)

That is, the curvature is given by a general parametrization as follows,

1
ρ

=
ẋ× ẍ

ṡ3
. (21)

Note that the vector product in 2 dimentions is a (pseudo-)scalar.

For example, if we take time as the parameter, we get

1
ρ

=
v × a

v3
. (22)

And, if we take θ as the parameter, we get

1
ρ

=

(
r2 + 2

(
dr

dθ

)2

− r
d2r

dθ2

)((
dr

dθ

)2

+ r2

)−3/2

. (23)

1.3 Complex Variable

Sometimes, the complex variable is useful. We use the notation x(+) for x+ i y, and x(−) for x− i y.
Relations among the complex variable , Cartesian and polar coordinate are

x = xex + yey = r(cos θ ex + sin θ ey) = rer, (24)

x(±) = x± i y = re±iθ, (25)
r2 = x2 = x(+)x(−), (26)

r = |x| =
∣∣∣x(+)

∣∣∣ =
∣∣∣x(−)

∣∣∣ . (27)

1.4 Jacobian Elliptic Function

Jacobian Elliptic function sn, cn and dn are a generalization of the trigonometric functions. They
have two parameters. One of the parameters is called the “modulus” and written as k. In the limit
of k → 0, they approach to the trigonometric functions or 1,

sn(u, k) → sn(u, 0) = sin(u), (28)
cn(u, k) → cn(u, 0) = cos(u) (29)
dn(u, k) → dn(u, 0) = 1. (30)
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They satisfy the following relations,

sn2(u, k) + cn2(u, k) = 1, (31)
k2sn2(u, k) + dn2(u, k) = 1, (32)

and differential equations,

d

du
sn(u, k) = cn(u, k)dn(u.k), (33)

d

du
cn(u, k) = −sn(u, k)dn(u, k), (34)

d

du
dn(u, k) = −k2sn(u, k)cn(u, k). (35)

Sometimes, we simply write these functions sn(u), cn(u), dn(u).
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2 The Lemniscate

2.1 Definition of the Lemniscate

The lemniscate in wide meaning is defined as a curve x on which the product of the distance from
given fixed N -points,

N∏

n=1

|x− cn| = const., (36)

where cn’s are given fixed points.

Whereas, the lemniscate in narrow meaning is defined as the curve x on which the product of the
distance from two fixed points is constant and pass through the midpoint of the two point. We can
take the two points ±c/

√
2 ex without loss of generality. Then, the midpoint is the origin. Let us

take this form for standard form of the lemniscate,
∣∣∣∣x−

c√
2
ex

∣∣∣∣
∣∣∣∣x +

c√
2
ex

∣∣∣∣ =
c2

2
. (37)

To get the relation between the Cartesian coordinate x and y, we may simplify the following
equation, (

x− c√
2
ex

)2 (
x +

c√
2
ex

)2

=
c4

4
. (38)

After a simple calculation, we will get
(
x2 + y2

)2 = c2
(
x2 − y2

)
. (39)

The alternative expression of the definition of the lemniscate is, using the complex variable x(+),
∣∣∣∣
(
x(+)

)2
− c2

2

∣∣∣∣ =
c2

2
. (40)

Then, multiplying the similar expression for x(−), we get

c4

4
=

((
x(+)

)2
− c2

2

)((
x(−)

)2
− c2

2

)
(41)

=
(
x(+)x(−)

)2
− c2

2

((
x(+)

)2
+

(
x(−)

)2
)

+
c4

4
. (42)

That is, (
x(+)x(−)

)2
=

c2

2

((
x(+)

)2
+

(
x(−)

)2
)

, (43)

which is equivalent to the equation (39).

Rewriting the equation (39) or (43) by the polar coordinate, we have another expression for the
lemniscate,

r2 = c2 cos 2θ. (44)
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2.2 Inversion of the Lemniscate and the Rectangular Hyperbola

Consider the following one-to-one map,

x = xex + xey ↔ X = Xex + Y ey =
c2

x2
x. (45)

Since
x ·X = c2 (46)

and x and X have common polar angle, x and X are mutual inversion with respective to the
circumcircle of the lemniscate. Dividing the both side of the equation (39) by (x2 + y2)2, we get

(
c2 x

x2 + y2

)2

−
(

c2 y

x2 + y2

)2

= c2. (47)

That is, the inversion of the lemniscate is the rectangular hyperbola,

X2 − Y 2 = c2. (48)

Figure 3: The lemniscate, circle and the rectangular hyperbola.

2.3 Curvature of the Lemniscate

Here, we use the expression of the lemniscate and the curvarure by the polar coordinate,

r2 = c2 cos 2θ, (49)

1
ρ

=

(
r2 + 2

(
dr

dθ

)2

− r
d2r

dθ2

)((
dr

dθ

)2

+ r2

)−3/2

. (50)

Using an identity

−r
d2r

dθ2
= −1

2
d2

dθ2
r2 +

(
dr

dθ

)2

, (51)

and equation for the lemniscate

−1
2

d2

dθ2
r2 = −c2

2
d2

dθ2
cos 2θ = 2c2 cos 2θ = 2r2, (52)
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we get

1
ρ

= 3

((
dr

dθ

)2

+ r2

)((
dr

dθ

)2

+ r2

)−3/2

= 3

((
dr

dθ

)2

+ r2

)−1/2

. (53)

Using the equation r2 = c2 cos 2θ, we get
(

dr

dθ

)2

=
c4

r2
sin2 2θ =

c4

r2

(
1− r4

c4

)
=

c4

r2
− r2. (54)

Thus, we finally get the following simple expression of the curvature for the lemniscate,

1
ρ

=
3r

c2
. (55)
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3 Parameterization of the Lemniscate by Jacobian Elliptic Func-
tions

3.1 Parameterizations of the Lemniscate

Since (
1

sn(u)

)2

−
(

cn(u)
sn(u)

)2

=
1− cn2(u)

sn2(u)
= 1, (56)

the vector

X(u) = c

(
1

sn(u)
ex +

cn(u)
sn(u)

ey

)
(57)

is a parametrization of the rectangular hyperbola (48).

Then, the inversion of this vector gives a parametrization of the lemniscate,

x(u) =
c sn(u)

1 + cn2(u)
(ex + cn(u)ey) . (58)

In the complex variable, the lemniscate is parameterized as

x(±)(u) =
c sn(u)

1∓ i cn(u)
. (59)

Note that the vector (57) and (57) represents the rectangular hyperbola and the lemniscate respec-
tively, for arbitrary modulus k. For example, taking the limit k → 0,

x(u) → c sin(u)
1 + cos2(u)

(ex + cos(u)ey) (60)

is also a parametrization of the lemniscate.

3.2 Radius, Velocity and Curvature

Let the parameter u be the time t. Then by a simple calculation, we get

x2(t) = c2 sn2(t)
1 + cn2(t)

, (61)

v2(t) = c2 dn2(t)
1 + cn2(t)

, (62)

v(t)× a(t) = −3c2 sn(t)dn3(t)
(1 + cn2(t))2

ex × ey, (63)

1
ρ2(t)

=
9
c2

sn2(t)
1 + cn2(t)

. (64)
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From this, we get

1
ρ2(t)

=
9
c4

x2(t), (65)

v2(t) +
(

k2 − 1
2

)
x2(t) =

c2

2
. (66)
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4 Centrifugal Force for the Lemniscate

What centrifugal force drives a motion on the lemniscate?
(Reference: M. R. Spiegel 1967 Theory and Problems of Theoretical Mechanics (New York: McGraw-
Hill) p 138

Figure 4: Red circle and black circle represent Sun and a point particle respectively.

4.1 Equation of motion under a Centrifugal Force

Equation of motion under a centrifugal force frer is
(

d2r

dt2
− r

(
dθ

dt

)2
)

er +
(

2
dr

dt

dθ

dt
+ r

d2θ

dt2

)
eθ = frer. (67)

Therefore, equation for the eθ direction is

0 = 2
dr

dt

dθ

dt
+ r

d2θ

dt2
=

1
r

d

dt

(
r2 dθ

dt

)
. (68)

That is, the angular momentum

` = r2 dθ

dt
(69)

is constant of motion. From the above, we can translate the derivative by time into the derivative
by angle θ,

d

dt
=

dθ

dt

d

dθ
=

`

r2

d

dθ
. (70)

Then, the equation of motion for er direction is

fr =
d2r

dt2
− r

(
dθ

dt

)2

=
`

r2

d

dθ

(
`

r2

d

dθ
r

)
− `2

r3
. (71)

That is, the equation of motion for centrifugal force is

fr

`2
+

1
r3

=
1
r2

d

dθ

(
1
r2

d

dθ
r

)
. (72)
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4.2 Magnitude of the Centrifugal Force for Motion on the Lemniscate

Now, consider motion on the lemniscate r2 = c2 cos(2θ). Differentiate both side by θ, we get

dr

dθ
= −c2 sin 2θ

r
= −

√
c4 − r4

r
. (73)

Using this relation, we can translate the derivative by the angle θ into the the derivative by the
radius r,

d

dθ
=

dr

dθ

d

dr
= −

√
c4 − r4

r

d

dr
. (74)

Substituting this expression into the above equation of motion (72), we get

fr

`2
+

1
r3

=
√

c4 − r4

r3

d

dr

(√
c4 − r4

r3

)
(75)

=
1
r3
− 3c2

r7
. (76)

That is, the centrifugal force fr is

fr = −3c2`2

r7
. (77)

And the potential U(r) that gives this force is

U(r) = −c2`2

2r6
. (78)

4.3 Time Dependence

From the polar representation of the lemniscate r2 = c2 cos 2θ and the conservation of the angular
momentum r2dθ/dt = `,

` = r2 dθ

dt
= c2 cos 2θ

dθ

dt
=

c2

2
d

dt
(sin 2θ). (79)

Therefore, we get

sin 2θ =
2`

c2
t, (80)

or

θ(t) =
1
2

sin−1

(
2`

c2
t

)
, (81)

where we take θ = 0 at t = 0.
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5 Constrained Motion along Arc and Chord of the Lemniscate

Figure 5: Black circles are motion along chords and red circle is motion along arc.

We don’t know who find the following property first. We read this property in Japanese book
“Rikigaku Ensyu”, edited by Kenichi Goto, Kunio Yamamoto and Ken Kankichi, published by
“Kyouritsu Syuppan”.

5.1 Quiz and Answer

Quiz: Consider a curve on a vertical plane. A particle is smoothly slide down along this curve
under the constant gravitational force. At t = 0, this particle starts at the origin O with 0
velocity. Now, for an arbitrarily given point P on this curve, the time to travel the arc OP is
the same as the time to travel the chord OP.
What is this curve?

Answer: The lemniscate r2 = c2 sin 2θ, with c arbitrary constant. Where the angle θ is measured
from the vertical axis.

P

O

θ
r

Figure 6: Polar coordinate. The angle θ is measured from the vertical axis.
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5.2 Shape of the Curve

Let t be the time at the position P. Considering the motion along the chord OP, we get

r =
1
2
g cos θ t2. (82)

On the other hand, from the energy conservation of the motion along the arc OP, we get
(

dr

dt

)2

+ r2

(
dθ

dt

)2

= 2gr cos θ. (83)

Substituting cos θ in equation (82) into equation (83), we get
(

1
r

dr

dt

)2

+
(

dθ

dt

)2

=
(

2
t

)2

. (84)

On the other hand, differentiate the logarithm of the the both side of equation (82) by t, we get

1
r

dr

dt
+ tan θ

dθ

dt
=

2
t
. (85)

The solution of the above equations (84) and (85) is

1
r

dr

dt
= cos 2θ

2
t

(86)

dθ

dt
= sin 2θ

2
t
. (87)

Thus we get the following relation between the radius r and the angle θ,

2
dr

r
=

2 cos 2θ
sin 2θ

dθ. (88)

Integrating this relation, we get
r2 = c2 sin 2θ, (89)

with an arbitrary constant c. This is the lemniscate.

5.3 Time dependence

Substituting r = 1/2 g cos θ t2 into r2 = c2 sin 2θ, we get

r2 = 2c2 sin θ cos θ = 1/4 g2 cos2 θ t4. (90)

Therefore,

tan θ =
g2

8c2
t4, (91)

or

θ(t) = tan−1

(
g2

8c2
t4

)
. (92)
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6 Log Potential from Two Fixed Points

Figure 7: Red circles represents two fixed points and black circle represents a point particle.

6.1 Equation of Motion

Let us consider the motion on the lemniscate

x(t) = c
sn(t)

1 + cn2(t)
(ex + cn(t)ey), (93)

with modulus
k2 =

1
2
. (94)

Since

v2(t) +
(

k2 − 1
2

)
x2(t) =

c2

2
, (95)

for arbitrary modulus k, the speed v(t) is constant for k2 = 1/2,

v2(t) =
c2

2
, for k2 =

1
2
. (96)

On the other hand, potential energy defined by

ln
∣∣∣∣x−

c√
2
ex

∣∣∣∣ + ln
∣∣∣∣x +

c√
2
ex

∣∣∣∣ . (97)

is constant on the orbit (93) by the definition of the lemniscate.

Thus, we expect that a potential energy proportional to the above drives the motion (93). Indeed,
the following equation of motion is satisfied,

d2

dt2
x(t) =

3c2

8

(
c/
√

2 ex − x(t)(
c/
√

2 ex − x(t)
)2 +

−c/
√

2 ex − x(t)(−c/
√

2 ex − x(t)
)2

)
. (98)

A proof is given soon later.

Potential energy U that gives this equation of motion is

U(x) =
3c2

8

(
ln

∣∣∣∣x−
c√
2
ex

∣∣∣∣ + ln
∣∣∣∣x +

c√
2
ex

∣∣∣∣
)

. (99)
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That is, attractive logarithmic potential from two fixed point drives the motion on the lemniscate.

Note that, since

ẍ = s̈et +
ṡ2

ρ
en (100)

for arbitrary parameter and

d2s

dt2
= 0, (101)

(
ds

dt

)2

= v2 =
c2

2
, (102)

1
ρ

=
3r

c2
, (103)

the acceleration or the force of this motion is simply given by

d2x(t)
dt2

=
3
2
r en. (104)

That is, the magnitude of the the acceleration or the force of this motion is proportional to the
distance from the origin r, and the direction is proportional to the principal normal vector en.

We find this motion on the lemniscate by the above considerations. But, this simple and beautiful
motion must already be found by some other person in old days. After searching several books,
we find a description of this motion in Japanese book “Rikigaku Ensyu”, edited by Kenichi Goto,
Kunio Yamamoto and Ken Kankichi, published by “Kyouritsu Syuppan”. This book gives another
proof of this motion. We don’t know who find this property first.

6.2 Proof

It is convenient to use complex variable x(±)(t) = x(t) · (ex ± i ey),

x(±)(t) = c
sn(t)

1∓ i cn(t)
. (105)

Using the relation of sn2(t) + cn2(t) = 1, k2sn2(t) + dn2(t) = 1 and k2 = 1/2, we get

d2

dt2
x(+)(t) = −c

3(1 + i cn(t))sn(t)
2(1− i cn2(t))2

(106)

and
1

c/
√

2− x(−)(t)
+

1
−c/

√
2− x(−)(t)

= −4(1 + i cn(t))sn(t)
c (1− i cn2(t))2

. (107)

Thus we get the equation of motion

d2

dt2
x(+)(t) =

3c2

8

(
1

c/
√

2− x(−)(t)
+

1
−c/

√
2− x(−)(t)

)
(108)

which is equivalent to the equation in (98).
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7 Three Body Choreography on the lemniscate

Hiroshi Fukuda, Hiroshi Ozaki and I showed that three body choreography on the lemniscate,

x(t) =
sn(t)

1 + cn2(t)
(ex + cn(t)ey), (109)

where sn and cn are the Jacobian elliptic function with modulus

k2 =
2 +

√
3

4
, (110)

satisfies an equation of motion.

See our preprint “Choreographic Three Bodies on the Lemniscate” for detail.
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