Synchronised Similar Triangles for
 Three Body Orbit with Zero Angular Momentum

T. Fujiwara
with
H. Fukuda, A. Kameyama, H. Ozaki
and M. Yamada

> June 1
> SPT 2004

Cala Gonone, Sardinia, Italy

Contents
 Geometry of three-body, $\mathrm{L}=0$ orbit

- Motivation and history.
- The figure-eight 3-body solution
- Geometrical property of $\mathrm{L}=0$ orbit
- Geometrical property of $\mathrm{L}=0$ and $\mathrm{I}=$ const. orbit
- Geometrical property of $\mathrm{L}=0$ orbit
http://arxiv.org/abs/math-ph/0404056
http://www.clas.kitasato-u.ac.jp/~fujiwara/nBody/nbody.html

Three-body figure-eight choreography

- C. Moore (1993): found numerically
- A. Chenciner and R. Montgomery (2000): proved the existence
- C. Simó (2000):
 found a lot of N-body choreographies numerically
- Barutello, Ferrario, Terracini, Chen, Shibayama, ...

Three-body figure-eight choreography

$$
\begin{aligned}
& i=1,2,3, m_{i}=1 \\
& \ddot{q}_{i}=\sum_{j \neq i} \frac{q_{j}-q_{i}}{\left|q_{j}-q_{i}\right|^{3}}, \\
& \begin{cases}q_{1}(t)=q(t), \\
q_{2}(t) & =q(t+T / 3), \\
q_{3}(t) & =q(t+2 T / 3), \\
\sum_{i} q_{i}=0, L=\sum_{i} q_{i} \wedge \dot{q}_{i}=0 .\end{cases}
\end{aligned}
$$

Figure-eight has zero angular momentum

Why $L=0$?
Total angular momentum is conserved.
Therefore,
$\sum_{i} q_{i} \wedge \dot{q}_{i}=\sum_{i}<q_{i} \wedge \dot{q}_{i}>=0$.
<․>> : time average

Then, what does $L=0$ mean?

Three tangents theorem (FFO 2003)
 $$
\mathrm{L}=0
$$

Theorem (Three Tangents). If $\sum_{i} p_{i}=0$ and $\sum_{i} q_{i} \wedge p_{i}=0$, then three tangents meet at a point.

Three tangents theorem

Theorem (Three Tangents). If $\sum_{i} p_{i}=0$ and $\sum_{i} q_{i} \wedge p_{i}=0$, then three tangents meet at a point.

Proof. Let C_{t} be the crossing point of two tangent lines p_{1} and p_{2}.
$\therefore\left(q_{1}-C_{t}\right) \wedge p_{1}=0,\left(q_{2}-C_{t}\right) \wedge p_{2}=0$
$3 \vee 2$
On the other hand, $\sum_{i} p_{i}=0, \sum_{i} q_{i} \wedge p_{i}=0 \Rightarrow \sum_{i}\left(q_{i}-C_{t}\right) \wedge p_{i}=0$.
$\therefore\left(q_{3}-C_{t}\right) \wedge p_{3}=0$.
C_{t} : the "Center of Tangents"

Centre of force for three body orbit $\mathrm{dL} / \mathrm{dt}=0$

Since

$$
\sum_{i} f_{i}=0, \quad \frac{d L}{d t}=\sum_{i} q_{i} \wedge f_{i}=0
$$

force vector from each bodies meet at a point C_{f} : the Centre of force. (Schiaparelli, Wintner)

Three tangents theorem
 $$
\mathrm{L}=0
$$

- Shape of the orbit of Figure Eight $\mathrm{x}(\mathrm{t})$ and the orbit $\mathrm{C}(\mathrm{t})$ are still unknown.
- Three Tangents Theorem gives a criterion for the orbit.
- For example ...

The simplest curve: 4-th order polynomial

$$
x^{4}+\alpha x^{2} y^{2}+\beta y^{4}=x^{2}-y^{2}
$$

Candidate:

> Lemniscate
and its scale transform

$$
\begin{gathered}
\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2} \\
x \rightarrow \mu x, y \rightarrow \nu y
\end{gathered}
$$

Three-body choreography on the lemniscate (FFO 2003)

Choreograpgy on the Lemniscate

$$
\begin{gathered}
q(t)=\left(\frac{\mathrm{sn}(t)}{1+\mathrm{cn}^{2}(t)}, \frac{\mathrm{sn}(t) \mathrm{cn}(t)}{1+\mathrm{cn}^{2}(t)}\right) \text { with } k^{2}=\frac{2+\sqrt{3}}{4}, \\
\left\{\begin{array}{l}
q_{1}(t)=q(t) \\
q_{2}(t)=q(t+T / 3) \\
q_{3}(t)=q(t+2 T / 3),
\end{array}\right.
\end{gathered}
$$

satisfies the equation of motion $\ddot{q}_{i}=-\frac{\partial}{\partial q_{i}} U$ with

$$
U=\sum_{i<j}\left(\frac{1}{2} \ln r_{i j}-\frac{\sqrt{3}}{24} r_{i j}^{2}\right) .
$$

Figure-eight solution under homogeneous potential

$V_{\alpha}= \begin{cases}\alpha^{-1} r^{\alpha} & \text { for } \alpha \neq 0 \\ \log r & \text { for } \alpha=0\end{cases}$
Numerical evidence
Moore: Exist for $\alpha<2$
CGMS: Exist for $\alpha<0$ and Stable $\alpha=-1 \pm \epsilon$

Figure-eight for $\alpha=-2$ has $I=\sum q_{i}^{2}=$ const.

Evolution of moment of inertia

$$
\begin{aligned}
& \sum_{i} m_{i} q_{i}=0, \quad M=\sum_{i} m_{i}, \quad I=\sum_{i} m_{i} q_{i}^{2} \\
& K=\sum_{i} \dot{q}_{i}^{2}, \quad V_{\alpha}=\frac{1}{\alpha} \sum_{i<j} m_{i} m_{j} r_{i j}^{\alpha}, \quad H=\frac{1}{2} K+V_{\alpha} . \\
& \Rightarrow \frac{d^{2} I}{d t^{2}}=2 K-2 \alpha V_{\alpha}=4 E-2(2+\alpha) V_{\alpha} . \\
& \text { Lagrange-Jacobi identity }
\end{aligned}
$$

For $\alpha=-2: \quad \frac{d^{2} I}{d t^{2}}=4 E \Rightarrow I=2 E t^{2}+c_{1} t+c_{2}$.
\therefore If $I \nrightarrow 0$ and $I \nrightarrow \infty$ then $E=0, c_{1}=0, I=$ const.
Figure-eight under $1 / r^{\wedge} 2$ has $I=$ constant. What does this mean?

Three normals theorem for $\mathrm{dI} / \mathrm{dt}=0$ orbit

Theorem (Three Normals). If
$\sum_{i} p_{i}=0$ and $\sum_{i} q_{i} \cdot p_{i}=0$, then three normals meet at a point.

Proof. Let C_{n} be the crossing point of two normals n_{1} and n_{2}.

Then, $\sum_{i}\left(q_{i}-C_{n}\right) \cdot p_{i}=0$, $\left(q_{1}-C_{n}\right) \cdot p_{1}=0$ and $\left(q_{2}-C_{n}\right) \cdot p_{2}=0$.
$\therefore\left(q_{3}-C_{n}\right) \cdot p_{3}=0$.
This theorem holds for
C_{n} : the "Center of Normals" general masses m_{i}.

Circumcircle theorem for $\mathrm{L}=0, \mathrm{dI} / \mathrm{dt}=0$ orbit

Theorem (CircumCircle). If $\sum_{i} p_{i}=0, \sum_{i} q_{i} \wedge p_{i}=0$ and $\sum_{i} q_{i} \cdot p_{i}=0$, then C_{t} and C_{n} are the end points of a diameter of the circumcircle for the triangle $q_{1} q_{2} q_{3}$.

Proof. Angles $C_{t} q_{i} C_{n}$ are 90 degrees for $i=1,2,3$.

This theorem holds for any masses m_{i}.

Centres for figure-eight solution under $1 / r^{\wedge} 2$ potential

Figure-eight $\Rightarrow L=0 . \quad V=\frac{1}{r^{2}} \Rightarrow I=$ const.

Synchronised similar triangles for figure-eight under $1 / \mathrm{r}^{\wedge} 2$

$\{0,0$,

$$
q_{i}^{\prime}=\frac{q_{i}}{\sqrt{I}} \quad m_{i}=1
$$

$$
p_{i}^{\prime}=\frac{p_{j}-p_{k}}{\sqrt{3 K}}
$$

Two triangles are inversely congruent. Because ...

$$
(i, j, k)=(1,2,3),(2,3,1),(3,1,2)
$$

Similar triangles for $\mathrm{L}=0, \mathrm{dI} / \mathrm{dt}=0$ orbit.

Theorem (Similar Triangles).

 If $\sum_{i} p_{i}=0, \sum_{i} q_{i} \wedge p_{i}=0$ and $\sum_{i} q_{i} \cdot p_{i}=0$, then triangle whose vetices are q_{i} and triangle whose perimeters are p_{i} are similarwith reverse orientation.
Proof. Look at the angles yellow colored and red colored.
It is obvious.
Remark: This theorem holds for any masses m_{i}

Ratio of magnification ($\mathrm{L}=0, \mathrm{dI} / \mathrm{dt}=0$)

Oriented area
 ($\mathrm{L}=0, \mathrm{dI} / \mathrm{dt}=0$)

$$
\begin{aligned}
p_{1} \wedge p_{2} & =-k^{2}\left(q_{2}-q_{1}\right) \wedge\left(q_{3}-q_{1}\right) \\
& =-\frac{K}{M I} m_{1} m_{2} m_{3}\left(q_{1} \wedge q_{2}+q_{2} \wedge q_{3}+q_{3} \wedge q_{1}\right) \\
& =-\frac{K}{I} m_{1} m_{2} q_{1} \wedge q_{2} .
\end{aligned}
$$

$\because \sum_{i} m_{i} q_{i}=0 \Rightarrow m_{1} m_{2} q_{1} \wedge q_{2}=m_{2} m_{3} q_{2} \wedge q_{3}=m_{3} m_{1} q_{3} \wedge q_{1}$.

$$
\frac{q_{i} \wedge q_{j}}{I}+\frac{v_{i} \wedge v_{j}}{K}=0
$$

Energy balance for $\mathrm{L}=0, \mathrm{dI} / \mathrm{dt}=0$ orbit under $1 / \mathrm{r}^{\wedge} 2$

$$
\begin{gathered}
\frac{d^{2} I}{d t^{2}}=0 \Rightarrow K=\sum_{i<j} \frac{m_{i} m_{j}}{r_{i j}^{2}} \\
L=0, \quad \frac{d I}{d t}=0 \Rightarrow \frac{1}{r_{i j}^{2}}=\frac{m_{1} m_{2} m_{3} K}{M I} \frac{1}{p_{k}^{2}} .
\end{gathered}
$$

$$
\therefore K=\frac{m_{1} m_{2} m_{3} K}{M I}\left(\frac{m_{1} m_{2}}{p_{3}^{2}}+\frac{m_{2} m_{3}}{p_{1}^{2}}+\frac{m_{3} m_{1}}{p_{2}^{2}}\right)
$$

$$
\therefore \frac{m_{1} m_{2}}{p_{3}^{2}}+\frac{m_{2} m_{3}}{p_{1}^{2}}+\frac{m_{3} m_{1}}{p_{2}^{2}}=\frac{M I}{m_{1} m_{2} m_{3}}=\text { const. }
$$

Geometrical properties of $\mathrm{L}=0$ orbit

- In the followings, we consider $\mathrm{L}=0$ orbit, not assuming dI/dt=0.

- Even in this case, we can find the synchronised similar triangles.

Synchronised similar triangles for $\mathrm{L}=0$ orbit

For $L=\sum_{i} m_{i} q_{i} \wedge v_{i}=0$ but $\frac{d I}{d t}=\sum_{i} m_{i} q_{i} \cdot v_{i} \neq 0$ orbit, consider

$$
\xi_{i}=\frac{q_{i}}{\sqrt{I}}, \eta_{i}=\frac{d \xi_{i}}{d t}=\frac{v_{i}}{\sqrt{I}}-\frac{1}{2 I} \frac{d I}{d t} \frac{q_{i}}{\sqrt{I}}, \mu_{i}=m_{i} .
$$

Then, we have

$$
\sum_{i} \mu_{i} \xi_{i}=0, \sum_{i} \mu_{i} \eta_{i}=0, \sum_{i} \mu_{i} \xi_{i} \wedge \eta_{i}=0, \sum_{i} \mu_{i} \xi_{i} \cdot \eta_{i}=0
$$

\therefore Triangle whose vertexes are $\xi_{i}=\frac{q_{i}}{\sqrt{I}}$ and
triangle whose perimeters are $\mu_{i} \eta_{i}=\mu_{i} \frac{d \xi_{i}}{d t}$ are always inversely similar.
(Synchronised Similar Triangles)

Purely algebraic derivation of synchronised similar triangles

Let $i=1,2,3, \xi_{i}, \eta_{i} \in \mathbb{R}^{2}, \mu_{i}>0$ such that

$$
\sum_{i} \mu_{i} \xi_{i}=0, \sum_{i} \mu_{i} \eta_{i}=0, \sum_{i} \mu_{i} \xi_{i} \wedge \eta_{i}=0, \sum_{i} \mu_{i} \xi_{i} \cdot \eta_{i}=0 .
$$

Let $M=\sum_{i} \mu_{i}, I(\xi)=\sum_{i} \mu_{i} \xi_{i}^{2}=M^{-1} \sum_{i<j} \mu_{i} \mu_{j}\left(\xi_{i}-\xi_{j}\right)^{2}$. Then

$$
\begin{gathered}
\frac{\mu_{k} \xi_{k}^{2}}{I(\xi)}=\frac{\mu_{i} \mu_{j}\left(\eta_{i}-\eta_{j}\right)^{2}}{M I(\eta)}, \quad \frac{\mu_{k} \eta_{k}^{2}}{I(\eta)}=\frac{\mu_{i} \mu_{j}\left(\xi_{i}-\xi_{j}\right)^{2}}{M I(\xi)} \\
\frac{\mu_{k} \xi_{k}^{2}}{I(\xi)}+\frac{\mu_{k} \eta_{k}^{2}}{I(\eta)}=\frac{\mu_{i} \mu_{j}\left(\xi_{i}-\xi_{j}\right)^{2}}{M I(\xi)}+\frac{\mu_{i} \mu_{j}\left(\eta_{i}-\eta_{j}\right)^{2}}{M I(\eta)}=\frac{\mu_{i}+\mu_{j}}{M}
\end{gathered}
$$

and

$$
\frac{\xi_{i} \wedge \xi_{j}}{I(\xi)}+\frac{\eta_{i} \wedge \eta_{j}}{I(\eta)}=0
$$

Synchronised similar triangles for $\mathrm{L}=0$ orbit

Therefore, we get

$$
\frac{\xi_{i} \wedge \xi_{j}}{I(\xi)}+\frac{\eta_{i} \wedge \eta_{j}}{I(\eta)}=0
$$

where

$$
\xi_{i}=\frac{q_{i}}{\sqrt{I}}, \eta_{i}=\frac{d \xi_{i}}{d t}=\frac{v_{i}}{\sqrt{I}}-\frac{1}{2 I} \frac{d I}{d t} \frac{q_{i}}{\sqrt{I}} .
$$

That is

$$
\frac{q_{i} \wedge q_{j}}{I}+\frac{v_{i} \wedge v_{j}}{K}=\frac{1}{2 I K} \frac{d I}{d t} \frac{d}{d t}\left(q_{i} \wedge q_{j}\right)
$$

where

$$
I=\sum_{i} m_{i} q_{i}^{2}, K=\sum_{i} m_{i} v_{i}^{2} .
$$

Evolution of oriented area for $\mathrm{L}=0$ orbit

Let

$$
\Delta=\frac{1}{2}\left(q_{2}-q_{1}\right) \wedge\left(q_{3}-q_{1}\right)=\sum_{i<j}\left(q_{i} \wedge q_{j}\right)
$$

Then

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}}\left(q_{i} \wedge q_{j}\right)=\frac{d^{2} q_{i}}{d t^{2}} \wedge q_{j}+q_{i} \wedge \frac{d^{2} q_{j}}{d t^{2}}+2 v_{i} \wedge v_{j} . \\
v_{i} \wedge v_{j}=-\frac{K}{I}\left(q_{i} \wedge q_{j}\right)+\frac{1}{2 I} \frac{d I}{d t} \frac{d}{d t}\left(q_{i} \wedge q_{j}\right) \\
\therefore I \frac{d}{d t}\left(\frac{1}{I} \frac{d \Delta}{d t}\right)=-\left(\frac{2 K}{I}+\sum_{i<j}\left(m_{i}+m_{j}\right) r_{i j}^{\alpha-2}\right) \Delta .
\end{gathered}
$$

Infinitely many syzygies or collisions (Montgomery 2002)

- Montgomery formulated and proved: Any bounded three-body orbit with $L=0$ has infinitely many collinear configurations (syzygies or eclipses) or collisions.
- We give a simple proof.

A simple proof of

 infinitely many syzygies or collisionsProof. Let

$$
S(t)=\frac{\Delta(t)}{\sqrt{I(t)}}
$$

Then

$$
\begin{aligned}
\frac{d^{2} S}{d t^{2}} & =-\left\{\sum_{i<j}\left(m_{i}+m_{j}\right) r_{i j}^{\alpha-2}+\frac{2 K}{I}+\frac{1}{2 I} \frac{d^{2} I}{d t^{2}}-\frac{3}{4 I^{2}}\left(\frac{d I}{d t}\right)^{2}\right\} S \\
& =-\omega^{2} S \\
\omega^{2} & \geq \omega_{0}^{2}>0 \text { where } \omega_{0}^{2}=M\left(\frac{m_{\min }^{2}}{M I_{\max }}\right)^{(2-\alpha) / 2} \quad \text { for } \alpha \leq 2
\end{aligned}
$$

Conclusion 1: Synchronised similar triangles for $\mathrm{L}=0, \mathrm{dI} / \mathrm{dt}=0$ orbit.

Conclusion 2: Synchronised similar triangles for figure-eight under $1 / \mathrm{r}^{\wedge} 2$

$\{0,0$.
$\{0,0$.

$$
q_{i}^{\prime}=\frac{q_{i}}{\sqrt{I}} \quad m_{i}=1 \quad p_{i}^{\prime}=\frac{p_{j}-p_{k}}{\sqrt{3 K}}
$$

Two triangles are inversely congruent.

$$
\sum_{i} \frac{1}{p_{i}^{2}}=3 I
$$

Conclusion 3: Synchronised similar triangles for $\mathrm{L}=0$ orbit.

The variables form the synchronised similar triangles

$$
\xi_{i}=\frac{q_{i}}{\sqrt{I}}, \eta_{i}=\frac{d \xi_{i}}{d t}=\frac{v_{i}}{\sqrt{I}}-\frac{1}{2 I} \frac{d I}{d t} \frac{q_{i}}{\sqrt{I}} .
$$

Then, we get

$$
\begin{gathered}
\frac{q_{i} \wedge q_{j}}{I}+\frac{v_{i} \wedge v_{j}}{K}=\frac{1}{2 I K} \frac{d I}{d t} \frac{d}{d t}\left(q_{i} \wedge q_{j}\right) \\
I \frac{d}{d t}\left(\frac{1}{I} \frac{d \Delta}{d t}\right)=-\left(\frac{2 K}{I}+\sum_{i<j}\left(m_{i}+m_{j}\right) r_{i j}^{\alpha-2}\right) \Delta .
\end{gathered}
$$

We gave a short proof that $\Delta(t)$ has infinitely many zeros if $\alpha \leq 2$.

I have a dream. One day, someone will e-mail me

and say
"I have solved the figure-eight !"

Thank you.

