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The figure-eight solution is a periodic solution to the planar three-body problem under the
homogeneous potential 1/rα with α > −2 on which three bodies chase eachother on one eight
shaped orbit with a same time spacing,

(xk(t), yk(t)) = (x(t+ kT/3), y(t+ kT/3)), k = 0, 1, 2, (1)

where T is the period. Since the potential with α = −2 stands for free harmonic oscillators, no
figure-eight solution exists.

The aim of this project is to understand analytic properties of figure eight solution in the
complex time plane, (x(z), y(z)), z ∈ C. Especially to understand the structure of singular points
and the behavior of the solution around the points.

This note was prepared for the seminar at Kanazawa University on December 2, 2016. Some
modifications and additions was made after the seminar.
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1 Lagrangian and the equations of motion

1.1 Cartesian coordinates xk and yk

Consider equal-mass planar three-body problem with mk = 1，k = 0, 1, 2. Lagrangian L is
defined by

L =
1

2

∑
k

((
dxk
dt

)2

+

(
dyk
dt

)2
)

+ U(x, y). (2)

Here, the potential function U(x, y) is given by for α ̸= 0,

U =
1

α

∑
i,j

1(
(xi − xj)2 + (yi − yj)2

)α/2 , (3)

and for α = 0,

U = −1

2

∑
i,j

log
(
(xi − xj)

2 + (yi − yj)
2
)
. (4)

Then the equations of motion for all α, including α = 0, are given by

d2xk
dt2

=
∑
i

xi − xk(
(xi − xj)2 + (yi − yj)2

)α/2+1
and x↔ y. (5)
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1.2 Complex variable qk = xk + iyk and q̃k = xk − iyk

We can take alternative set of independent variables qk, q̃k defined by,

qk(t) = x(t) + iy(t), q̃k(t) = x(x)− iy(t) ⇔ xk(t) =
qk + q̃k

2
, yk(t) =

qk − q̃k
2i

. (6)

Using (
dxk
dt

)2

+

(
dyk
dt

)2

=

(
dxk
dt

+ i
dyk
dt

)(
dxk
dt

− i
dyk
dt

)
=
dqk
dt

dq̃k
dt
,

(xi − xj)
2 + (yi − yj)

2 =
(
(xi − xj) + i(yi − yj)

)(
(xi − xj)− i(yi − yj)

)
= (qi − qj)(q̃i − q̃j),

(7)

Lagrangian for α ̸= 0 is

L =
1

2

dqk
dt

dq̃k
dt

+
1

α

∑
i,j

1(
(qi − qj)(q̃i − q̃j)

)α/2 ,
and for α = 0 is

L =
1

2

dqk
dt

dq̃k
dt

− 1

2

∑
i,j

log
(
(qi − qj)(q̃i − q̃j)

)
.

However, if we use this Lagrangian, the canonical momentum pk has factor 1/2, namely,

pk =
∂L

∂

(
dqk
dt

) =
1

2

dq̃k
dt
.

Although the factor 1/2 makes no problem, it is something awkward.
So, we use

L =
dqk
dt

dq̃k
dt

+ U (8)

for Lagrangian. For α ̸= 0

U =
2

α

∑
i,j

1(
(qi − qj)(q̃i − q̃j)

)α/2 , (9)

and for α = 0
U = −

∑
i,j

log
(
(qi − qj)(q̃i − q̃j)

)
. (10)

The momenta are, then, defined by

pk =
∂L

∂

(
dqk
dt

) =
dq̃k
dt
, p̃i =

dqk
dt
. (11)
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Note that canonical momentum pk for qk is not dqk/dt but dq̃k/dt. The Hamiltonian is given by

H =
∑(

pk
dqk
dt

+ p̃i
dq̃k
dt

)
− L =

∑
pkp̃i − U . (12)

This Hamiltonian is also twice of the usual one. The equations of motion for all α are given by

dqk
dt

=
∂H
∂pk

= p̃k,
dp̃k
dt

= − ∂H
∂q̃k

=
∑
j

qj − qk(
(qj − qk)(q̃j − q̃k)

)α/2+1
,

dq̃k
dt

=
∂H
∂p̃k

= pk,
dpk
dt

= − ∂H
∂qk

=
∑
j

q̃j − q̃k(
(qj − qk)(q̃j − q̃k)

)α/2+1
.

(13)

1.3 Variables for shape η, η̃, moment of inertia I = r2 and rotation
angle ψ

To describe the motion of the shape of the triangle q0q1q2, let us introduce the shape variable η
and η̃ defined by

η =

√
3 q0

q2 − q1
, η̃ =

√
3 q̃0

q̃2 − q̃1
. (14)

We also use ηx and ηy defined by

ηx =
η + η̃

2
, ηy =

η − η̃

2i
⇔ η = ηx + iηy, η̃ = ηx − iηy. (15)

The explicit expression for ηx and ηy by xk and yk are

ηx =

√
3
(
x0(x2 − x1) + y0(y2 − y1)

)
(x2 − x1)2 + (y2 − y1)2

,

ηy =

√
3
(
y0(x2 − x1)− x0(y2 − y1)

)
(x2 − x1)2 + (y2 − y1)2

.

(16)

The geometrical description of these variables are in the following. Using a similarity transforma-
tion and translation, map q1 → −1/

√
3 and q2 → +1/

√
3, then q0 is mapped to η. See figure 1.

The explicit form for this map is

z → 2√
3

(
z − q1
q2 − q1

− 1

2

)
. (17)

One can easily check

q1 → − 1√
3
, q2 → +

1√
3
, and q0 → η =

√
3 q0

q2 − q1
, (18)

using q0 + q1 + q2 = 0. In this variable two body collisions are expressed by η = ±1/
√
3

and ∞. Actually, for collision the bodies 0 and 1 at q0 = q1 = Q, we have q2 = −2Q and
η =

√
3Q/(−2Q − Q) = −1/

√
3. Similarly, η = +1/

√
3 for collision 0 and 2 and η = ∞ for

collision 1 and 2.
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Figure 1: Triangle q0q1q2 and the definition of the shape variable η.

To recover the variables qk and q̃k from η and η̃, we have to recover size variable r and angle
variable ψ as follows. Let us define the variable ξk whose center of mass is fixed at the origin
subtracting the center of mass η/3 from the triangle −1/

√
3, +1/

√
3, and η,

ξ0 = η − η

3
=

2η

3
, ξ1 = − 1√

3
− η

3
, ξ2 =

1√
3
− η

3
, (19)

and replace η to η̃ to get ξ̃k. Since the triangle ξ0ξ1ξ2 is similar to the triangle q0q1q2, there exist
r, ψ ∈ R that satisfy

qk = reiψ
ξk√∑
ξk ξ̃k

, q̃k = re−iψ
ξ̃k√∑
ξk ξ̃k

. (20)

Here, r2 turns out to be the moment of inertia,

I =
∑

(x2k + y2k) =
∑

qkq̃k = r2. (21)

Substituting (20) into (8), we get the Lagrangian for r, ψ, η, η̃,

L =

(
dr

dt

)2

+ r2
(
dψ

dt
+

1

2i(1 + ηη̃)

(
η̃
dη

dt
− η

dη̃

dt

))2

+ r2
1

(1 + ηη̃)2
dη

dt

dη̃

dt
+ U(r, η, η̃). (22)

Potential for α ̸= 0 is

U =
2

αrα

(
1 + ηη̃

2

)α/21 +
2α(

(1−
√
3η)(1−

√
3η̃)
)α/2 +

2α(
(1 +

√
3η)(1 +

√
3η̃)
)α/2

 , (23)

and for α = 0 is

U = −6 log r + 3 log(1 + ηη̃)− log(1− 3η2)(1− 3η̃2) + log 2. (24)

Sometimes, it is useful to use µk defined by

µ0 =
1 + ηη̃

2
, µ1 =

2(1 + ηη̃)

(1−
√
3η)(1−

√
3η̃)

, µ2 =
2(1 + ηη̃)

(1 +
√
3η)(1 +

√
3η̃)

. (25)

There is an identity
1

µ0
+

1

µ1
+

1

µ2
= 3. (26)
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The expression for potentials are for α ̸= 0

U =
2

αrα

(
µ
α/2
0 + µ

α/2
1 + µ

α/2
2

)
, (27)

and for α = 0
U = −6 log r + log(µ0µ1µ2). (28)

The Lagrangian does not depend on ψ, the angular momentum pψ is constant and zero for
the figure-eight solution,

pψ =
∂L

∂

(
dψ

dt

) = 2r2
(
dψ

dt
+

1

2i(1 + ηη̃)

(
η̃
dη

dt
− η

dη̃

dt

))
= 0. (29)

Therefore, the equation for ψ is，

dψ

dt
= − 1

2i(1 + ηη̃)

(
η̃
dη

dt
− η

dη̃

dt

)
. (30)

Integrating this equation, we get the expression for the rotation angle

ψ(t) = −
∫ t

0

1

2i(1 + ηη̃)

(
η̃
dη

dt
− η

dη̃

dt

)
dt+ ψ(0). (31)

The other momenta are

pr = 2
dr

dt
,

pη =
r2

(1 + ηη̃)2
dη̃

dt
, pη̃ =

r2

(1 + ηη̃)2
dη

dt
.

(32)

The Hamiltonian H is

H =
p2r
4

+
(1 + ηη̃)2

r2
pηpη̃ − U . (33)

Here, we have dropped the term that proportional to the angular momentum pψ = 0.

1.4 Shape sphere

The kinetic energy for the shape variable defines the metric

dηdη̃

(1 + ηη̃)2
=

dη2x + dη2y
(1 + η2x + η2y)

2
(34)

of the Riemann sphere whose radius is 1/2. Actually, the coordinates

X =
ηx

1 + η2x + η2y
, Y =

ηy
1 + η2x + η2y

, and Z = 1− 1

1 + η2x + η2y
(35)

satisfy

X2 + Y 2 +

(
Z − 1

2

)2

=
1

4
(36)
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Figure 2: The shape plane and the shape sphere. The black, red, green points correspond to
collisions, Euler configurations, and Lagrange configurations. Left: Projection of a point on the
shape plane to the shape sphere. Right: Cyclic exchange of indexes of qk 0 → 1 → 2 → 0
corresponds to 2π/3 rotation around the axis (green line) that connect two Lagrange points.
Exchange of 1 ↔ 2 corresponds to π rotation around the axis (black line) that connects a Euler
point and a two bidy collision.

and

dX2 + dY 2 + dZ2 =
dη2x + dη2y

(1 + η2x + η2y)
2
. (37)

The Euler points (ηx, ηy) = (0, 0), (±
√
3) are mapped to (X,Y, Z) = (0, 0, 0), (±

√
3/4, 0, 3/4).

The Lagrange points (ηx, ηy) = (0,±1) are mapped to (X,Y, Z) = (0,±1/2, 1/2).
Let us use a polar coordinates whose Z ′ axes is the line connection two Lagrange points,

Z ′ = −Y = sin(θ)/2, X ′ = 1/2− Z = cos(θ) cos(ϕ)/2, Y ′ = cos(θ) sin(ϕ)/2. Namely,

X =
ηx

1 + η2x + η2y
=

1

2
cos θ sinϕ,

Y =
ηy

1 + η2x + η2y
= −1

2
sin θ,

Z = 1− 1

1 + η2x + η2y
=

1

2
− 1

2
cos θ cosϕ.

(38)

Inversely,

1 + η2x + η2y =
2

1 + cos θ cosϕ
, (39)

and (ηx, ηy) =
(cos θ sinϕ,− sin θ)

1 + cos θ cosϕ
. (40)

Then, we have
dη2x + dη2y

(1 + η2x + η2y)
2
=

1

4

(
dθ2 + (cos θ)2dϕ2

)
(41)
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and
ηxdηy − ηydηx
1 + η2x + η2y

=
− sinϕdθ + cos θ sin θ cosϕdϕ

2(1 + cos θ cosϕ)
. (42)

The expression for the three functions µk by θ and ϕ are,

µ0 =
1

1 + cos θ cosϕ
, µ1 =

1

1 + cos θ cos(ϕ+ 2π/3)
, µ2 =

1

1 + cos θ cos(ϕ− 2π/3)
. (43)

Then, the Lagrangian for r, θ, ϕ is

L =

(
dr

dt

)2

+
r2

4

((
dθ

dt

)2

+ (cos θ)2
(
dϕ

dt

)2
)

+ U . (44)

Here, the term proportional to the angular momentum p2ψ is dropped.
Symmetric polynomials of µk can be expressed by θ and 3ϕ,

µ0 + µ1 + µ2 =
3(7− cos(2θ))

2(cos θ)3 cos(3ϕ)− 6(cos θ)2 + 8
, (45)

µ0µ1µ2 =
16

10− 6 cos(2θ) + (3 cos θ + cos(3θ)) cos(3ϕ)
, (46)

and µ0µ1 + µ1µ2 + µ2µ0 = 3µ0µ1µ2 by the identity (26).
The cyclic permutation of the indexes 0 → 1 → 2 → 0 makes a transform of η → η′

η =

√
3q0

q2 − q1
→ η′ =

√
3q1

q0 − q2
=

√
3 + η

1−
√
3η

(47)

that is equivalent to the rotation in the shape sphere ϕ → ϕ + 2π/3. On the other hand, the
exchange of indexes 1 ↔ 2 makes the rotation η → η′ = −η that is equivalent to θ → −θ and
ϕ→ −ϕ. See figure 2.

1.5 Extension of the solution in t ∈ R to z ∈ C
We extend the time t ∈ R to z ∈ C.

dqk
dz

=
∂H
∂pk

,
dp̃i
dz

= − ∂H
∂q̃k

,

dq̃k
dz

=
∂H
∂p̃i

,
dpk
dz

= − ∂H
∂qk

.

(48)

Integrating this equations with the initial condition for the figure-eight solution at z = 0, we get
the analytic continuation of qk(z), q̃k(z), pk(z), p̃i(z).

1.6 Comments

1.6.1 Degrees of freedum

Originally, we have 6 independent variables xk and yk. Then we take their linear combination
qk = xk+ iyk and q̃ = xk− iyk, again we have 6 independent variables. Taking the center of mass
frame

∑
xk =

∑
yk = 0, we have 4 independent variables. Similarly,

∑
qk =

∑
q̃k = 0 leave us
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4 independent variables. Then, we use {r, ψ, η, η̃} or {r, ψ, ηx, ηy}, again we have 4 independent
variables. In summary,{

xk, yk, k = 0, 1, 2∑
xk =

∑
yk = 0

⇔
{

qk, q̃k, k = 0, 1, 2∑
qk =

∑
q̃k = 0

⇔ r, ψ, η, η̃. (49)

And three sets for shape variables

η, η̃ ⇔ ηx, ηy ⇔ θ, ϕ. (50)

The relations used to convert the variables are just algebraic equations that hold for any number
whether the number are real or complex.

The variables qk and q̃k are independent variable, as well as xk and yk are independent. We
can see that the equations of motion (13) are equivalent to the equations (5). Let us see the
Euler-Lagrange equations for the Lagrangian L, closely. The partial derivative of U by qk for
α ̸= 0, treating q and q̃ are independent variable, is

∂U
∂qk

= −
∑
j

1

(qk − qj)α/2+1(q̃k − q̃j)α/2
= −

∑
j

q̃k − q̃j
((qk − qj)(q̃k − q̃j))α/2+1

, (51)

and for α = 0 is
∂U
∂qk

= −
∑
j

1

(qk − qj)
= −

∑
j

q̃k − q̃j
(qk − qj)(q̃k − q̃j)

. (52)

Therefore, for all α including α = 0,

∂U
∂qk

= −
∑
j

q̃k − q̃j
((qk − qj)(q̃k − q̃j))α/2+1

, (53)

On the other hand, the partial derivative L by dqk/dt, treating dqk/dt and dq̃k/dt are independent
variables, is

∂L

∂

(
dqk
dt

) =
∂

∂

(
dqk
dt

) (dqk
dt

dq̃k
dt

)
=
dq̃k
dt
. (54)

Therefore, the Euler-Lagrange equations by qk yield

d

dt

∂L

∂

(
dqk
dt

) =
∂U
∂qk

⇒ d2q̃k
dt2

= −
∑
j

q̃k − q̃j
((qk − qj)(q̃k − q̃j))α/2+1

. (55)

Similar calculations by q̃k yield

d2qk
dt2

= −
∑
j

qk − qj
((qk − qj)(qk − qj))α/2+1

. (56)

The equations (55) and (56) are equivalent to the equations of motion for xk and yk in (5).

1.6.2 A relation of q and q̃ for “physical” solution

We call a solution “physical” when the value of the solution is real for real time,

{x(t), y(t)} : “physical” ⇔ x(t), y(t) ∈ R for t ∈ R. (57)
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Therefore, for “physical” solution, q(t) = x(t)+iy(t) and q̃(t) = x(t)−iy(t) in t ∈ R are mutually
complex conjugate.

Analytic continuation of the “physical” solution, however, makes x(z), y(z) complex for z ∈ C.
Therefore, q(z) = x(z) + iy(z) and q̃(z) = x(z)− iy(z) are no longer complex conjugate of each
other. Are there any relation between q and q̃ ? Yes. To see this relation, remember a fact of
analytic function.

In general, for a function f(z) which is analytic in a region D that contains a real interval,
(f(z∗))∗ (∗ represents complex conjugate) is also an analytic function of z, because the following
limit

lim
h→0

(f(z∗ + h∗))∗ − (f(z∗))∗

h
= lim
h→0

(
f(z∗ + h∗)− f(z∗)

h∗

)∗

(58)

yields a fixed value for any direction of h → 0. We write this function f†(z). For a series
expansion f(z) =

∑
anz

n, f†(z) is given by f†(z) =
∑
a∗nz

n. For example, sin†(z) = sin(z),
cos†(z) = cos(z), and for f(z) = eiz, f†(z) = e−iz. Sometimes f†(z) is called a “mirror image”
of f(z). The correspondence between f(z) and f†(z) is one to one. All information for f†(z) is
contained in f(z).

If f(z) is analytic in D and f(t) ∈ R for t ∈ R, then f†(z) = f(z) in D. This is because
f†(t) = (f(t∗))∗ = f(t) for t ∈ R, and analytic continuation keeps this relation for t ∈ C. If this
function is even, f(−z) = f(z), then f(iτ) is real, and if odd then it is pure imaginary for τ ∈ R.
This is obvious by the series expansion of f(z) at z = 0. Another proof of this property is given by
the relation f(z) = f†(z) = (f(z∗))∗. Namely, f(z)∗ = f(z∗). Then, f(iτ)∗ = f(−iτ) = ±f(iτ).

Now, let us back to the relation of q and q̃. For “physical” solutions, including the figure-eight
solution, both x(z) and y(z) are analytic around the real axis z = t ∈ R and have real value on
the real axis. Therefore,

for “physical” solution, x†(z) = x(z) and y†(z) = y(z). (59)

Then,

for “physical” solution, q̃(z) = q†(z) = (q(z∗))∗ and q(z) = q̃†(z) = (q̃(z∗))∗ for z ∈ D. (60)

Thus, for physical solution, q̃(z) is a “mirror image” of q and all information for q̃(z) is contained
in q(z). See figure 3. Similarly, η†x(z) = ηx, η

†
y(z) = ηy (See the equation (16)), r†(z) = r(z) and

ψ†(z) = ψ(z), therefore η† = η̃ and η̃† = η, for “physical” solution.
Note that even for “physical” solution, q(z0) = x(z0) + iy(z0) = 0 for z0 /∈ R does NOT

always imply q̃(z0) = x(z0)− iy(z0) = 0, although q(t) = x(t) + iy(t) = 0 in t ∈ R always imply
q̃(t) = x(t)− iy(t) = 0. In general,

for “physical” solution, q(z0) = 0 ⇔ q̃(z∗0) = 0. (61)

Because, q̃(z∗0) = q†(z∗0) = (q(z0))
∗ = 0. For example, x(t) = 5t and y(t) = 5t2 is a “physical”

solution for d2x/dt2 = 0 and d2y/dt2 = 10, the free fall problem. Then q(z) = 5(z + iz2) and
q̃(z) = 5(z − iz2) surely satisfy q†(z) = q̃(z) and q̃†(z) = q(z) and q(i) = 5(i − i) = 0 while
q̃(i) = 5(i+ i) = 10i ̸= 0. Surely, q̃(−i) = 5(−i+ i) = 0 is satisfied.

1.6.3 Comments for analytic continuation and periodicity f(z) = f(z + 1)

Let functions f(t) and g(t) be equal on the real axis, and both are analytic for a region that
contains the real axis. Then h(z) = f(z)− g(z) = 0 for the region, and analytic continuation of
the function h(z) = 0 yields h(z) = 0 for all z ∈ C. Therefore,

f(t) = g(t) on t ∈ R ⇒ f(z) = g(z) for all z ∈ C.
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Figure 3: For “physical” solution, q(z) and q̃(z) are “mirror image” of each other, namely,
q̃(z) = (q(z∗))∗. Figures for q(z) and q̃(z) for figure-eight solution for α = 2 with period T = 1
are shown. The upper row from left to right: |q(z)|, ℜ(q(z)), and ℑ(q(z)). The lower row from
left to right: |q̃(z)|, ℜ(q̃(z)), and ℑ(q̃(z)). The region z = t + iτ , t ∈ [0, 1], τ ∈ [−0.25, 0.25] is
shown. The white region shows areas where values are too positively large or negatively large.
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a branch point

Figure 4: The function f(t) has period 1 on the real axis (the solid line). Then, f(C; z) =
f(EC; z + 1) (the thick solid lines), while f(C; z) ̸= f(CE; z + 1) (the dashed line) if the closed
path C−1ECE−1 encloses a branch point. Therefore, f(z) has no period along the dashed line,
in general.

Be careful. This may be correct in some sense, and at the same time be incorrect in other sense,
because both of the function can be multivalued. In one branch f(z) = g(z) may holds, while in
other branch f(z) ̸= g(z).

For multivalued function, let us specify the path on what we integrated from the origin to z.
We write the function f whose initial point is 0 and integrated on the path C be f(C; z). If we
first integrated on C1 and then on C2 to reach z, we write f(C1C2; z). So, the above equation
should be

f(t) = g(t) on t ∈ R ⇒ f(C; z) = g(C; z) for all z ∈ C and all path C. (62)

For example, let f be a function with period 1, f(t) = f(t + 1) on the real axis. In our
notation, f(Et; t) = f(EEt; t+1), where path Et and E represent the path on the real axis with
length t and unit length. Then

f(t) = f(t+ 1) on t ∈ R ⇒ f(C; z) = f(EC; z + 1) for all z ∈ C and all path C. (63)

If the path C−1ECE−1 encloses a branch point, f(C; z) ̸= f(CE; z + 1). See figure 4.

2 The figure-eight solution

2.1 Properties of periodic solutions

The second derivative of the moment of inertia is

d2I

dt2
= 2

d

dt

∑(
xk
dxk
dt

+ yk
dyk
dt

)
= 2

∑((
dxk
dt

)2

+

(
dyk
dt

)2
)

+ 2
∑(

xk
∂

∂xk
+ yk

∂

∂yk

)
U.

(64)

For α ̸= 0, the second term yields −2αU . Therefore,

d2I

dt2
= 2

∑((
dxk
dt

)2

+

(
dyk
dt

)2
)

− 2αU = 4E + (4− 2α)U. (65)

On the other hand, for α = 0,
∑

(xk∂/∂xk + yk∂/∂yk)U = −3. Therefore

d2I

dt2
= 2

∑((
dxk
dt

)2

+

(
dyk
dt

)2
)

− 6. (66)
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2.1.1 Properties of a periodic solution for α ̸= 0, 2

Integrating the relation (65) for one period, we get the virial theorem,

J =

∫ T

0

dt
∑((

dxk
dt

)2

+

(
dyk
dt

)2
)

= α

∫ T

0

dtU. (67)

The left hand side is the action variable or the abbreviated action J defined by

J =

∮ ∑(
dxk
dt

dxk +
dyk
dt

dyk

)
. (68)

Integration of E = 1/2
∑

((dxk/dt)
2 +(dyk/dt)

2)−U for one period yields ET = J/2−
∫
dtU =

J/2− J/α. Here, we have used the relation (67). Therefore, for α ̸= 0, 2,

J =
2α

α− 2
ET. (69)

Substituting T = dJ/dE, we get J = 2α/(α− 2)× EdJ/dE. Integration of this relation yields,

J = D|E|(α−2)/(2α), (70)

where D is a constant and scale invariant.

2.1.2 Properties of a periodic solution for α = 2

The case α = 2 is special. In this case d2I/dt2 = 4E. Integration this relation yields I =
2Et2 + c1t+ c0, where c1 and c0 are constant. Therefore, for any periodic solution in α = 2,

E = 0 and I = c0. (71)

The action variable J = D is scale invariant.

2.1.3 Properties of a periodic solution for α = 0

Since
∑

(xk∂/∂xk + yk∂/∂yk)U = −3 for α = 0, the action variable is simply

J = 3T. (72)

Therefore, J = 3dJ/dE yields
J = De|E|/3, (73)

where D is a constant and scale invariant.

2.2 Properties of the figure-eight solution

The figure-eight solution is a solution of the equation of motion (5). The three bodies chase each
other on the same single orbit that looks like “8” with equal time spacing. Namely, for period
T , the solution qk(t) is described by a single function q(t),

qk(t) = q

(
t+

kT

3

)
, for k = 0, 1, 2. (74)
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Figure 5: Euler configuration and orbits of the figure-eight solution. Red, green, blue points
represent qk(tEuler), k = 0, 1, 2 respectively. Curves represent the orbit qk(tEuler + t), for t ∈
[0, T/3].

Figure 6: The potential function µ in α = 2 for η = x+ iy on the path z = tEuler + iτ . The red
circles represent the contours for µ = 0 and the colored region represents µ > 0.

The center of mass and the total momentum is set to zero,∑
qk =

∑
pk = 0 and similar equations for q̃k, p̃i. (75)

Since the left and right lobe of the orbit has the same area with opposite direction, the solution
has vanishing angular momentum,∑(

xk
dyk
dt

− yk
dxk
dt

)
= 0. (76)

The figure-eight solution takes Euler configurations and isosceles configurations alternately
in the interval T/12. In the following sections, the behavior of the figure-eight solution around
an Euler configuration and an isosceles configuration will be discussed.

2.2.1 Around an Euler configuration

The figure-eight solution has 6 Euler configurations when one body is at the origin and momenta
of other two bodies are equal. Figure 5 represents one of the Euler configurations when q0 = 0
and dq1/dt = dq2/dt. Let this moment be t = tEuler.
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Since at t = tEuler, q0 = 0, q1 = −q2 and p1 = p2, the time reversal and index change 0 → 0,
1 ↔ 2 is equivalent to the rotation of 180 degree around the origin. Nemely,

q0(tEuler − t) = −q0(tEuler + t),

q1(tEuler − t) = −q2(tEuler + t), and q2(tEuler − t) = −q1(tEuler + t).
(77)

Analytic continuation keeps this relations

q0(tEuler − z) = −q0(tEuler + z),

q1(tEuler − z) = −q2(tEuler + z), and q2(tEuler − z) = −q1(tEuler + z)
(78)

for z ∈ C in some region including the real axis.
Let t, τ ∈ R. Since q̃k(z) = (qk(z

∗))
∗
in this region and by (78),

q̃0(tEuler − t+ iτ) = (q0(tEuler − t− iτ))
∗
= − (q0(tEuler + t+ iτ))

∗
. (79)

Similarly,

q̃1(tEuler − t+ iτ) = − (q2(tEuler + t+ iτ))
∗
, q̃2(tEuler − t+ iτ) = − (q1(tEuler + t+ iτ))

∗
. (80)

For the shape variable, it follows

η̃(tEuler − t+ iτ) = − (η(tEuler + t+ iτ))
∗
. (81)

Finally, for the path z = tEuler + iτ ,

q̃0 = −(q0)
∗, q̃1 = −(q2)

∗, q̃2 = −(q1)
∗, (82)

and
η̃ = −(η)∗. (83)

Let η = x+ iy, x, y ∈ R on this path. Then η̃ = −(η)∗ = −(x− iy). Then the kinetic energy is
given by

K = (1 + ηη̃)−2 dη

dz

dη̃

dz
= (1− x2 − y2)−2

((
dx

dτ

)2

+

(
dy

dτ

)2
)
. (84)

The potential function for α = 2 is

µ =
(1− x2 − y2)

(
(x− 1/

√
3)2 + y2 − 4/3

) (
(x+ 1/

√
3)2 + y2 − 4/3

)(
(x− 1/

√
3)2 + y2

) (
(x+ 1/

√
3)2 + y2

) . (85)

Therefore, the sign of µ for α = 2 will change on three circles x2+y2 = 1 and (x±1/
√
3)2+y2 =

4/3. Since, the kinetic energy K ≥ 0 in the region x2 + y2 < 1 and K = µ for periodic solution
in α = 2, the potential function µ must be positive or zero. Therefore, the orbit of η and η̃ on
this path must be confined in the first region that contains the origin. See figure 6.

2.2.2 Around an isosceles configuration

The figure-eight solution has 6 isosceles configurations when one body is on the x-axis and other
two bodies are mutually opposite side of the x-axis. Figure 7 represents one of the isosceles
configurations when q0 is on the x-axis and x1 = x2, y1 = −y2. Let this moment be t = tiso.
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Figure 7: Isosceles configuration at t = tiso when the point q0 is on the x-axis, and orbits of the
figure-eight solution. Red, green, blue points represent qk(tiso), k = 0, 1, 2 respectively. Curves
represent the orbit qk(tiso + t) for t ∈ [0, T/3].

Since time inversion at t = tiso and exchange of the index 1 ↔ 2 is equivalent to the inversion
with respect to the x-axis, namely,

x0(tiso − t) = x0(tiso + t),

x1(tiso − t) = x2(tiso + t), and x2(tiso − t) = x1(tiso + t),
(86)

and

y0(tiso − t) = −y0(tiso + t),

y1(tiso − t) = −y2(tiso + t), and y2(tiso − t) = −y1(tiso + t).
(87)

Since x0(tiso+t) is an even function of t, x0(tiso+iτ) is real. Also, y0(tiso+t) is an odd function
of t, y0(tiso + iτ) is pure imaginary. For z = tiso + iτ , let x0 = x and y0 = iy, x(τ), y(τ) ∈ R.
Then, for z = tiso + iτ

q0(z) = x0(z) + iy0(z) = x(z)− y(z) ∈ R,
q̃0(z) = x0(z)− iy0(z) = x(z) + y(z) ∈ R.

(88)

On the other hand,

(x1(tiso + iτ))∗ = (x2(tiso − iτ))∗ = x†2(tiso + iτ) = x2(tiso + iτ),

(y1(tiso + iτ))∗ = −(y2(tiso − iτ))∗ = −y†2(tiso + iτ) = −y2(tiso + iτ)
(89)

yields
(x1(tiso + iτ))∗ ∓ i(y1(tiso + iτ))∗ = x2(tiso + iτ)± iy2(tiso + iτ). (90)

Namely, for z = tisosceles + iτ

(q1(z))
∗ = q2(z) and (q̃1(z))

∗ = q̃2(z). (91)

Therefore, for some interval of τ , q0 are on the real axis and q1 and q2 are mutually complex
conjugate. So, the triangle q0q1q2 remains to be an isosceles triangle.

Then, the shape variable η is pure imaginary,

η =

√
3 q0

q2 − q1
=

√
3 q0

(q1)∗ − q1
∈ iR. (92)

Therefore, it is natural to define

η(tiso + iτ) = iζ(τ), ζ ∈ R. (93)
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√
3 respectively. The points ±∞, −1/

√
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√
3 represent the collision of

q1 − q2 → 0, q0 − q1 → 0, and q0 → q2. The three circles on the shape plane correspond to the
great circles of longitude 0, 2π/3, and 4π/3 on the shape sphere. The points 0 and ±

√
3 stands

for Euler points, and the points ±1 for Lagrange points.

For the other isosceles configuration at t = tiso+T/3+ t, qk(tiso+T/3+ t) = qk+1(tiso + t) make
the cyclic permutation of indexes 0 → 1 → 2 → 0. Therefore, using (47),

η(tiso + T/3 + iτ) =

√
3 + iζ(τ)

1− i
√
3 ζ(τ)

=
1√
3
+

2√
3

(
1 + i

√
3 ζ(τ)

1− i
√
3 ζ(τ)

)
. (94)

and using the same permutation again,

η(tiso + 2T/3 + iτ) = −
√
3− iζ(τ)

1 + i
√
3 ζ

= − (η(tiso + T/3 + iτ))
∗
. (95)

Namely, in the complex plane, η(tiso+iτ) is on the y-axis and η(tiso+T/3+iτ) and η(tiso+2T/2+
iτ) are on each circle whose radius is 2/

√
3 and whose center is 1/

√
3 and −1/

√
3 respectively.

Similarly, η̃(tiso + iτ) is also pure imaginary. There is no obvious relation between η(tiso + iτ)
and η̃(tiso + iτ). They are two independent variables.

More about qk: Let q0 = −2a, q1 = a− ib, q2 = a+ ib and q̃0 = −2α, q̃1 = α+ iβ, q2 = α− iβ.
Then, the moment of inertia is

r2 = q0q̃0 + q1q̃1 + q2q̃2 = 6aα+ 2bβ = constant. (96)

The equation for vanishing angular momentum yield∑
qk
dq̃k
dz

− q̃k
dqk
dz

= 6

(
a
dα

dz
− α

da

dz

)
+

(
b
dβ

dz
− β

db

dz

)
= 0. (97)

So, we still have two independent variables.
In this parametrization, the shape variables η = i

√
3a/b and η̃ = −i

√
3α/β. Then,

ηη̃ =
3aα

bβ
=
r2 − 2bβ

2bβ
. (98)

Therefore, ηη̃ → −1 if bβ → ∞.
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3 Numerical integrations by Mathematica

3.1 Integrations for complex variables on complex path

Mathematica can treat differential equations dfn(t)/dt = gn(t) for complex variables fn and gn.
However, the independent variable t must be real.

So, to integrate the equations of motion for z = zi to zf , we take a complex number e that
is proportional to zf − zi. Then, using dz = edσ, σ ∈ R, we rewrite the equations of motion in
the following,

dqk
dσ

= e
∂H
∂pk

,
dp̃i
dσ

= −e ∂H
∂q̃k

,

dq̃k
dσ

= e
∂H
∂p̃i

,
dpk
dσ

= −e ∂H
∂qk

.

(99)

There are two choices for e and σ, 1) e = (zf − zi)/|zf − zi| and σ ∈ [0, |zf − zi|]，2) e = zf − zi
and σ ∈ [0, 1]．I’m using both.

3.2 Method to take a proper branch in the equation of motion

For any multivalued function, Mathematica returns a principal value that is defined by the
Wolfram language. This can make artificial discontinuity when the denominator in the equation
of motion ((qj − qk)(q̃j − q̃k))

α/2+1 passes through the branch cut.
There is no problem for α = 2 and 0. The terms are ((qj−qk)(q̃j− q̃k))2 and (qj−qk)(q̃j− q̃k).
For α = 1, Newton potential, the denominator in the equation of motion is ((qj − qk)(q̃j −

q̃k))
3/2. In this case, we can introduce three auxiliary variables rij(z) that stand for ((qj −

qk)(q̃j − q̃k))
1/2 and make the equations of motion

dqk
dσ

= e p̃i,
dp̃i
dσ

= e
∑
j

qj − qk
r3jk

,

dq̃k
dσ

= e pk,
dpk
dσ

= e
∑
j

q̃j − q̃k
r3jk

,

drij
dσ

=
1

2rij

((
dqi
dσ

− dqj
dσ

)
(q̃i − q̃j) + (qi − qj)

(
dq̃i
dσ

− dq̃j
dσ

))
.

(100)

In the last equation, there is no e in the both side. I didn’t do this calculation.
For general α, for example α =

√
2, we can introduce additional three more auxiliary variables

Rij that stand for rαij . Then we add the equations for Rij ,

dRij
dσ

=
αRij
rij

drij
dσ

. (101)

I didn’t do this calculation.

3.3 Ask “NDSolve” to warm “an egg” with “other eggs”

In this section, a tip to integrate a function of orbit q(t) and p(t) that are a solution of an
equation of motion is described. For example, how to calculate the action variable J with very
high accuracy,

J =

∫ T

0

∑
pk(t)p̃i(t)dt. (102)
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Here is my method. I’m not sure this is the best or not. Just give the differential equation
for J (“an egg”) to “NDSolve” as well as the equations of motion (“other eggs”),

dq

dt
=
∂H

∂p
,
dp

dt
= −∂H

∂q
, and

dJ

dt
=
∑

pk(t)p̃i(t) (103)

with initial condition J(0) = 0. Then, “NDSolve” will integrate this equations and gives us
J = J(T ) with accuracy we want.

Professor Andrzej J. Maciejewski told me another method at the seminar. Add an option
“InterpolationOrder -> All” to “NDSolve”. This works fine. Thanks.

Background: “NDSolve” of Mathematica gives an interpolating function q(t) and p(t). In my
experiences, we can control the accuracy of the end point, q(tf ) and p(tf ) choosing the option
parameters “WorkingPrecision”, “AccuracyGoal” and “PrecisionGoal”. So, we can get q(tf )
and p(tf ) with very high accuracy. However, the accuracy at intermediate time, 0 < t < tf are
poor. In my experiences, it is order 10−8 or something. So, even if we calculate q(t) and p(t)
very accurately by NDSolve, the integration using “NIntegrate” gives the value with accuracy of
order 10−8 or something. The two method shown above resolve this issue.

4 Numerical calculations for α = 2, a strong force potential

4.1 The initial conditions and the accuracy

We fixed the period T = 1．The initial condition for the isosceles configuration with 40 digits is

q0 =0.19743123404582463292775384213515165845219778006226

+ 0.15377830312582075297746703903968385700658995175922i
(104)

It takes 0.83 sec to calculate t ∈ [0, T/12]. The values at t = T/12 that must be 0 represent
an order of accuracy.

q0(T/12) = 2.9× 10−25 + 2.7× 10−26i,

p1[T/12]− p2[T/12] = −6.6× 10−24 − 5.0× 10−24i.
(105)

Using the same initial conditions, the calculation for t ∈ [0, T ] takes 9.28 sec. The periodicity
that should be 0 also represent an order of accuracy squared.∑

(qk(T )− qk(0))(q̃k(T )− q̃k(0)) = 5.2× 10−40,∑
(pk(T )− pk(0))(p̃i(T )− p̃i(0)) = 1.4× 10−37.

(106)

So, we can trust this numerical calculation with accuracy of order 10−18.

4.2 Overview of the singularities

Using the initial condition, we calculated the function q(z) = q0(z) in the complex plane. The
integration path to z = t+ iτ was taken z = 0 → t→ t+ iτ .

We can see singularities at ℜ(z) = 1/12 + k/6，k = 1, 2, 3, ..., 6，ℑ(z) ∼ ±0.1, see figure 9.
In the region that contains the real axis and not contains any singularities, the function

qk(z), q̃k(z), pk(z), p̃i(z) are analytic. Therefore the periodicity qk(z) = qk(z + T ) keeps. Then,
for a small fixed τ , curve qk(t + iτ), t ∈ [0, T ] in the complex plane make an closed loop. For
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Figure 9: The absolute value of q(z) for the figure-eight solution for α = 2．The left is a 3D
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|q(z)| > 2 are cut offed. The right is a contour plot for the same values. We can see singularities
at z = 1/12 + k/6± iτ0, k = 1, 2, 3, 4, 5, 6 and τ0 ∼ 0.09.
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Figure 10: Deformations by τ of the figure-eight solution for α = 2. The left column: q(t + iτ)
for t ∈ [0, T ]. Top to down, τ = 0, 0.05, 0.09. The right column: Same for q̃(t+ iτ). Red, green,
blue points represent the body 0, 1, 2 respectively.
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Figure 11: Figure-eight solution for α = 2: q(1/12 + iτ) (left) and q̃(1/12 + iτ) (right) for
τ ∈ [0, 0.09]. Red, green, blue points represent the body 0, 1, 2 respectively. Edges without
point represent τ = 0, while with point represent τ = 0.09.

τ = 0, this loop is the figure-eight. Making the value of τ slightly large, the curve qk(t+iτ) is also
a closed curve, namely, a slightly deformed figure-eight. Larger value of τ makes a deformation
large. Then, near τ ∼ 0.1, something singular will happen. See figure 10.

To see what is happened near a singularity, we trace the behavior of q(z) for z = 1/12 →
1/12 + 0.09i. See figure 11. What we can see from the figure 11 is z = 1/12 + iτ，τ ∈ R,

q̃0(z) = − (q0(z))
∗
, q̃1(z) = − (q2(z))

∗
, q̃2(z) = − (q1(z))

∗
, (107)

that is shown in (82).

4.3 A “half collision”

The other thing we can see from the figure 11 is, for z → z0: singularity, the functions looks
to behave．

q0(z), q2(z) → Q ∴ q1(z) → −2Q,

q̃0(z), q̃1(z) → −Q∗ ∴ q̃2 = 2Q∗.
(108)

This is a simultaneous “half collision”.
If the simultaneous “half collision” (108) really takes place, the moment of inertia I

is I =
∑
k qkq̃k → 3QQ∗. Therefore,

QQ∗ → I

3
. (109)

And the shape variables behave

η =

√
3q0

q2 − q1
→

√
3Q

Q+ 2Q
=

1√
3
,

η̃ =

√
3q̃0

q̃2 − q̃1
→ −

√
3Q∗

2Q∗ +Q∗ = − 1√
3
.

(110)

This limit value ±1/
√
3 gives the singular points of the shape potential µ(η, η̃),

µ(η, η̃) =

(
1 + ηη̃

2

)(
1 +

4

(1−
√
3η)(1−

√
3η̃)

+
4

(1 +
√
3η)(1 +

√
3η̃)

)
. (111)

endif.

4.4 Behavior of the shape variables

Then, let us investigate the behavior of η(z), η̃(z) more precisely.
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Figure 12: Figure-eight solution for α = 2: Behavior of the shape variables η(1/12 + iτ) and
η̃(1/12+ iτ). The solid curve represents η, the dashed η̃. The red points represents the values at
τ = 0.09. The black points stands for ±1/

√
3. The red and black points are definitely separated.

4.4.1 For the path z = 0 → 1/12 (Euler config.) → 1/12 + iτ

On this path, the speculation (110) is doubtful. It may be wrong. Figure 12 shows the behavior
of η(z) and η̃(z) integrated on the path z = 0 → 1/12 → 1/12+ 0.09i and shown for the interval
z = 1/12 → 1/12 + 0.09i. Although the point z = 1/12 + 0.09i is considerably close the singular
point, figure 12 shows that the variables η and η̃ are definitely separated from the singular points
η = 1/

√
3, η̃ = −1/

√
3 and not look like to come to the singular point. The right red point is

0.5577...−0.00696...i, while the black point, the singular point of the potential is 1/
√
3 = 0.577....

The separation is 0.02. This is clearly not zero in this precision.
On the other hand, the relations (107) is correct on this path. Therefore, the relation for η

and η̃ is

η̃ =

√
3 q̃0

q̃2 − q̃1
=

√
3 (−q0∗)

−q1∗ + q2∗
= −(η)∗. (112)

This is the equation (83) which can be validated by figure 12.

4.4.2 For the path z = 0 → 1/12± ϵ→ 1/12± ϵ+ i/10

Then, we calculate η and η̃ for the path z → 1/12± ϵ→ 1/12± ϵ+ i/10. The results are shown
in the figure 13.

(WorkingPrecision=90, AccuracyGoal=PrecisionGoal=70)
Figure 13 clearly show that η(1/12+ ϵ+ iτ) passes through the singular point 1/

√
3 for some

value of ϵ ∈ [0, 1/1000]. However, for the same value of ϵ, η̃ doesn’t pass the singular point
−1/

√
3.

Namely, figure-eight solution with α = 2 doesn’t have simultaneous “half collision”. A “half
collision” η(z) → 1/

√
3 takes place on the line slightly right of ℜ(z) = 1/12, while a “half

collision” η̃(z) → −1/
√
3, takes place slightly left of ℜ(z) = 1/12.

The orbit of η and η̃ for the line ℜ(z) = 1/12 in the figure 13 have bounce near (±1/
√
3, 0).

These bounces are due to the potential barrier. See figure 6. The orbits are confined in the first
region that contains the origin in the figure 6.

4.4.3 For the path z = 0 → k/6 (isosceles) → k/6 + iτ

The points z = k/6, k = 0, 1, 2 are isosceles configurations.
See figure 14. For the path z = k/6 (isosceles) → k/6 + iτ for k = 0, 1, 2, ..., τ ∈ R, the

triangle q0q1q2 keeps isosceles triangle. 1) For the path k = 0, it looks like q0 − q2 → 0 and
q̃0 − q2 → ∞ for τ → ∞. So, η → 1/

√
3 and η̃ → −1/

√
3. 2) For the path k = 2, q1 − q2 → 0

and it looks like q̃1 − q̃2 → ∞. It looks like η → a large finite and η̃ → a small finite.
The two observation 1) and 2) for η, η̃ are inconsistent. If η → ±1/

√
3 for some k, the η

must be one of ±1/
√
3 or ∞ for any k. And, if η → ∞ in some k, the η must be one of ±1/

√
3

or ∞ for any k.
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Figure 13: Figure-eight solution for α = 2: The behavior of η and η̃ on the path z → 1/12+ ϵ→
1/12 + ϵ + i/10. From the top to buttom ϵ = −2/1000,−1/1000, 0, 1/1000, 2/1000, and the
collection of them. Although the curve with ϵ = 0 has sharp kink, neither η nor η̃ pass over the
singular point ±1/

√
3. The curve for η on ϵ = 1/1000, the 4th row, looks like pass over 1/

√
3,

however, it passes through the right side of the point by 0.00045. For η̃ on ϵ = −1/1000, the
second row, is the same. The curves are symmetric for the sign of ϵ by (81).
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Figure 14: Figure-eight solution for α = 2: Variables for the path z = 0 → k/6 (isosceles) →
k/6 + i. Top row from left to right: qi(z), q̃i(z) and η(z) (solid cueve), η̃(z) (dashed curve) for
k = 0. Middle row from left to right: qi(z), q̃i(z) for k = 2. The bottom from left to right:
ℑ(η(z)) and ℑ(η̃(z)) for k = 2.
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Figure 15: Figure-eight solution for α = 2: ℑ(η(z)) (left), ℑ(η̃(z)) (middle), and ℑ(η(z))ℑ(η̃(z))
(right) for the path z = 2/6 → 2/6 + 5i.

We did a calculation for the path z = 0 → 2/6 → zf = 2/6+5i. See figure 15. The values are
η(zf ) = 1223.8858i, η̃(zf ) = 0.00081162853i, and η(zf )η̃(zf ) = −0.99334066. This calculation
suggests that η → a large finite, η̃ → a small finite and ηη̃ → −1 for τ → ∞. Note that ηη̃ = −1
is a singular point of the kinetic energy and the potential function for the shape variable.

5 Numerical calculations for α = 0, the log potential

5.1 Initial conditions and the accuracy

(Working precision is 50 digits and accuracy goal is 40 digits.) The initial values for T = 1 is

q0 =0.10241289852920214438174926754912368054949503934674

+0.041697032000697187383190551065368654996906624587934I,

q2 =q0
∗, q1 = −q0 − q2.

(113)

p̃0 = q̇0 =− 1.2869890410757253809138483878789425507834685174612

− 0.17466427244018614916468069345553849732161429171241i,

p̃2 =− (p̃0)
∗,

p̃1 =− p̃0 − p̃2 = 0.34932854488037229832936138691107699464322858342481i.

(114)

The values that must be zero are q0(T/12) = −1.68 × 10−43 + 6.14 × 10−43i，
∑(

qk(T ) −

qk(0)
)(
q̃k(T )− q̃k(0)

)
= 1.47× 10−80,

∑(
pk(T )− pk(0)

)(
p̃i(T )− p̃i(0)

)
= 1.43× 10−78.

The total energy at t = 0 and t = T are

E(0) = −6.156648138369543176185659263404723109168330836671,

E(T ) = −6.156648138369543176185659263404723109168147762003,

E(T )− E(0) = 1.83× 10−40.

(115)

For logarithmic potential, the action variable satisfies J = 3T , the equation (72). In this
numerical calculation takes T = 1. So J must be 3. Actually we get

J =

∫ T

0

∑
pkp̃idt = 3.0000000000000000000000000000000000000002036092749,

J − 3 = 2.04× 10−40.

(116)
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Figure 16: Figure-eight solution for α = 0: The left column represents |q(z)|, the middle |K(z)|,
and the right |I(z)|. The upper row is a 3D view, and the lower is a contour map.

5.2 Overview of the singularities

(The working precision is 50 digits, accuracy goal is 30 digits.) The singularities take place
around z = k/6 + iτ , k = 1, 2, 3, ..., 6，τ ∼ ±0.037. At the time t = k/6, the configuration is
isosceles.

Then, we investigate the behavior of q and q̃ on the passes 0 → 0.037i and 0 → 1/6 →
1/6 + 0.037i. See figure 17 and 18.

For this logarithmic potential, q0 and q2 look to behave q0, q2 → Q ∈ R for z = 0 → 0.037i.
On this path, the relations q1(z), q̃1(z) ∈ R，(q0)

∗ = q2(z), (q̃0)
∗ = q2(z) are satisfied. The

behavior is completely different from that of α = 2.
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Figure 17: Figure-eight solution for α = 0: qk(z) and q̃k(z) on the path z = 0 → 0.037i. The
edge with a point is z = 0.037i. Red, green, blue stand for 0, 1, 2 respectively. It looks like
q0, q3 → Q ∈ R. z = 0 represents an isosceles configuration.
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Figure 18: Figure-eight solution for α = 0: qk(z) and q̃k(z) on the path z = 0 → 1/6 → 1/6 +
0.037i. The part of z = 1/6 → 1/6+0.037i is shown．The edge with a point is z = 1/6+0.037i.
Red, green, blue stand for k = 0, 1, 2 respectively. On this path, it looks like q̃0, q̃1 → −Q.
z = 1/6 represents an isosceles configuration.
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Figure 19: Figure-eight solution for α = 0: Left and right column represent q(t+iτ) and q̃(t+iτ)
respectively, for t ∈ [0, T ] with fixed τ . Top to down row represent τ = 0, 0.01, 0.02, 0.03 and
0.037. Red, green, blue points stand for t = 0, T/3, 2T/3.
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Figure 20: Figure-eight solution for α = 0: η(k/6 + iτ)(solid curve) and η̃(k/6 + iτ)(dashed
curve), τ ∈ [0, 0.037] for the figure-eight in logarithmic potential. The left stands for k = 0 and
the right for k = 1. η goes to 1/

√
3 in the left (k = 0), and η̃ goes to −1/

√
3 for the right(k = 1).

The end point with red point stands for τ = 0.037. For k = 2, η and η̃ are pure real, that is
shown in figure 21. Configurations at z = k/6 for k = 0, 1, 2, ... represent isosceles configurations.

5.3 Behavior of the variables

5.3.1 For the path z = 0 → k/6 (isosceles config.) → k/6 + iτ

We investigate η and η̃ on the path z = 0 → k/6 → k/6 + 37i/1000. The configurations at
z = k/6, k = 0, 1, 2, ... are isosceles configurations. See figure 20. For k = 0, η goes to 1/

√
3,

while for k = 1, η̃ goes to −1/
√
3. The difference between η and the singular point at τ = 37/1000

is η(37i/1000)− 1/
√
3 = −6.13× 10−6 + 0.00376i. Thus, η(z) goes to the singular point a little

bit above z = 37i/1000.
As shown before, for k = 2, namely on the path z = 1/3 → 1/3 + iτ , η and η̃ are pure

imaginary. The values are

η(1/3) =− 2.697× 10−50 + 4.2541239769777412027037212009155794354168623946363i,

η̃(1/3) =− 2.697× 10−50 − 4.2541239769777412027037212009155794354168623946363i,
(117)

This must satisfy η(1/3) + η̃(1/3) = 0. And

η(1/3 + 0.00376i) =5× 10−47 + 354.39756079277408947472999964069417467817273118485i,

η̃(1/3 + 0.00376i) =0× 10−50 − 1.6001247850505522871270219532920776564783048707308i.

(118)

See figure 21.
The orbits of η(z), η̃(z) for z = ϵ → ϵ + iτ，τ ∈ [0, 0.06] with ϵ = k/1000, k = −2,−1, 1, 2,

without k = 0 are shown in figure 22.

5.3.2 For the path z = 0 → 1/12 (Euler config.) → 1/12 + 3i

The configuration at z = 1/12 is an Euler configuration. The integration path is z = 0 → 1/12 →
1/12 + 3i. The figure 23 shows the behavior of q, q̃, η and η̃ for z = 1/12 → 1/12 + 3i.
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Figure 21: Figure-eight solution for α = 0: The shape variables η and η̃ for z = 1/3 → 1/3 +
0.037i. On this path, the variables are pure imaginary. Solid line represents ℑ(η) and dashed
line ℑ(η̃). At z = 1/3, η + η̃ = 0. η → ∞ for z → 1/3 + (0.037 + ...)i. Configuration at z = 1/3
is an isosceles configuration.
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Figure 22: Figure-eight solution for α = 0: The orbits of shape variables η(z) (solid curve) and
η̃(z) (dashed curve) for the paths z = ϵ → ϵ + 0.6i with ϵ = k/1000, k = −2,−1, 1, 2 without
k = 0 are shown. The curves for right to left stand for k = −2,−1, 1, 2. Configuration at z = 0
is an isosceles configuration.
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Figure 23: For the path z = 1/12 → 1/12 + iτ . The top row represents q̃(z) (left) and q(z)
(right). The middle figure represents η̃(z) (dashed curve) and η(z) (solid). The bottom row
shows closeup view of η̃(z) (left) and η(z) (right). In the lowest figures, the origin is ±1/

√
3.
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On this path, q0 and q2 or q̃0 and q̃1 take “binary rotation”. For τ → ∞, it looks like
η → 1/

√
3 and η̃ → −1/

√
3 where “half collisions” take place.

6 Series expansion around a “collision” point

6.1 A “full collision”, “half collision”, and simultaneous “half collision”

In the real space-time, t, xk(t), yk(t) ∈ R, a two-body collision take places when xi− xj → 0 and
yi − yj → 0, equivalently qi − qj → 0 and q̃i − q̃j → 0 for t → t0. In this case, both η, η̃ tend to
the same singular point ±1/

√
3 or ∞. For example, both η and η̃ goes to 1/

√
3. We would like

call this case a “full collision” or “real collision”.
In the complex time z, however, it is possible to behave one of η or η̃ goes to a singular point

while the other goes to normal point. For example, η → 1/
√
3 and η̃ → a /∈ {±1/

√
3,∞}. We

will call this a “half collision”.
If two half collision take place for the same z → z0, we will call this a simultaneous “half

collision”. For example, η → 1/
√
3 and η̃ → −1/

√
3 for z → z0.

6.2 A series expansion around a possible simultaneous “half collision”
for α = 2

In this section, we will show that a possible simultaneous “half collision” on the path z = tEuler+iτ
does not behaves like the observation. In other words, the observed “half collision” are not
simultaneous nor take place on the path z = tEuler + iτ . The half collisions take place at slightly
different places, z = tEuler ± ϵ+ iτ0, ϵ ̸= 0, that is suggested by the numerical calculations.

Actually, we will show that possible simultaneous “half collision” on the path z = tEuler + iτ
for figure-eight solution in α = 2 behaves

η =
1√
3
(1− 22/3(τ0 − τ)2/3 + ...), η̃ =

−1√
3
(1− 22/3(τ0 − τ)2/3 + ...) (119)

for τ → τ0 − 0. So, the solution approaches the singular point from exactly left for η and from
exactly right for η̃. This behavior is clearly different from the observed behavior. See figures 12
and 13.

The moment of inertia r2 is constant for periodic solution in α = 2. Without loss of generality,
we can change the scale of z to make r = 1. Since the angular momentum is zero, the dynamical
variables are only the shape variables. The Lagrangian for dz = idτ is

L = K + U , (120)

K =
1

(1 + ηη̃)2
dη

dz

dη̃

dz
=

−1

(1 + ηη̃)2
dη

dτ

dη̃

dτ
, (121)

U =

(
1 + ηη̃

2

)(
1 +

4

(1−
√
3η)(1−

√
3η̃)

+
4

(1 +
√
3η)(1 +

√
3η̃)

)
. (122)

The equations of motion are

d2η̃

dτ2
=

2η

1 + ηη̃

(
dη̃

dτ

)2

− (1 + ηη̃)2
∂

∂η
U , and η ↔ η̃. (123)
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Let τ = 0 be the time of the simultaneous “half collision”. Since, we take the path z =
tEuler + iτ , η̃ = −(η)∗ follows. Expanding η and η̃ by τ ,

η =
1√
3
(1 + aτλ), η̃ =

−1√
3
(1 + a∗τλ

∗
), ℜλ > 0. (124)

Substitute this expansion to K，U , using (1 + ηη̃) ∼ 2/3 + ..., the main term is

K ∼ −9

4

(
aλ√
3
τλ−1

)(
−a

∗λ∗√
3
τλ

∗−1

)
=

3

4
aa∗λλ∗τλ+λ

∗−2, (125)

and

U ∼ 1

3

(
−2

a
τ−λ − 2

a∗
τ−λ

∗
)
. (126)

Therefore, to get E = K−U = 0 namely to get K ∼ U in the main term, λ+λ∗−2 = −λ = −λ∗.
Namely λ = λ∗ = 2/3 and

3

4
aa∗ × 4

9
= −2

3
× a+ a∗

aa∗
. (127)

Thus, we have
(aa∗)2 = −2(a+ a∗). (128)

The equation of motion for η and η̃ in the series (124) with λ = λ∗ = 2/3 yields

−
(
a2a∗ + 4

2
√
3a2

)
τ−4/3 +O(t−2/3) = 0,

(
a(a∗)2 + 4

2
√
3(a∗)2

)
τ−4/3 +O(t−2/3) = 0. (129)

Therefore, a2a∗ = a(a∗)2 = −4. This equation has only one solution a = a∗ = −22/3. Since this
solution satisfies (127), this solution has zero energy. Thus, the only one solution is given by
(119).

A comment: If a and a∗ are free parameters a = a∗ = −22/3ω, ω3 = 1 are solutions.

6.2.1 A simple solution

For the next order,

η(τ) =
1√
3

(
1− 22/3τ2/3 + b τ4/3

)
+O(t2),

η̃(τ) = − 1√
3

(
1− 22/3τ2/3 + b∗τ4/3

)
+O(t2),

(130)

the equation of demand only b = b∗. The total energy E = 0 demands b = −3 × 2−2/3. Then,
for the higher order terms, the equations of motion determine the coefficients,

η(τ) = −η̃(τ) = 1√
3

(
1− 22/3τ2/3 − 3

22/3
τ4/3 − 37

28
τ2 − 5

56× 21/3
τ8/3 +O(t10/3)

)
. (131)

Once we assume η = −η̃, the Lagrangian is simply

K =
+1

(1− η2)2

(
dη

dτ

)2

,

U =

(
1− η2

2

)(
1 +

8

1− 3η2

)
.

(132)
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Then, E = K − U = 0 yields (
dη

dτ

)2

=
3

2

(1− η2)3(3− η2)

1− 3η2
. (133)

So, this case is integrable.
Again, I would like to stress that although this is a solution of the equations of motion for

α = 2 with total energy zero, constant moment of inertia and vanishing angular momentum, this
is not the behavior of the figure-eight solution on the line z = tEuler + iτ .

Note that the series replacing τ2/3 → τ2/3ω, ω3 = 1 is also a solution of the equation of
motion and the total energy zero. This means that if we forget about the condition η̃ = −(η)∗,
and if we put the condition η = −η̃, the solution is a solution of (133) and the series

η(τ) = −η̃(τ) = 1√
3

(
1− 22/3τ2/3ω − 3

22/3
τ4/3ω2 − 37

28
τ2ω3 − 5

56× 21/3
τ8/3ω4 +O(t10/3)

)
.

(134)
is a solution.
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