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The figure-eight solution is a periodic solution to the planar three-body problem under the
homogeneous potential 1/r* with o > —2 on which three bodies chase eachother on one eight
shaped orbit with a same time spacing,

(xk(t)7 yk(t» = (x<t + kT/?’)a y(t —+ kT/S))’ k=0,1,2, (1)

where 7' is the period. Since the potential with o = —2 stands for free harmonic oscillators, no
figure-eight solution exists.

The aim of this project is to understand analytic properties of figure eight solution in the
complex time plane, (x(2),y(2)), z € C. Especially to understand the structure of singular points
and the behavior of the solution around the points.

This note was prepared for the seminar at Kanazawa University on December 2, 2016. Some
modifications and additions was made after the seminar.
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1 Lagrangian and the equations of motion

1.1 Cartesian coordinates x; and y;

Consider equal-mass planar three-body problem with m; = 1, & = 0,1,2. Lagrangian L is

defined by o X . ) i )
22<<dt) o () >+U<x,y>. @)

Here, the potential function U(z,y) is given by for « # 0,

and for @ = 0,

1
U= —5 > tog (2 —2)* + (4 — 1)?). (4)
i
Then the equations of motion for all «, including a = 0, are given by
d?z;, Ti — Tk
pra Z PYEES] and z < y. (5)

g ((xz‘ — ;)% + (yi — yj)Q)



1.2 Complex variable ¢, = xy + iy and ¢, = x, — 1Y%

We can take alternative set of independent variables g, G defined by,

. ~ . +4q —q
ar(t) = o(t) +iy(t), @u(t) = a(2) — iy(t) & wt) = L ) = L (9)
Using
day, \? dyi drg | dyg\ (dxgp  .dyg
M + | = = —=4+:1== - 2=
dt dt dt dt dt dt
_ dak dax
dt dt’ (7)

(zi — ) + (yi —y;)° = ((xi — ;) +i(yi — ?/j)) ((ﬂfi —xj) — iy — yj))
= (¢ — 4;)(@ — @),

Lagrangian for oo # 0 is

24t dt «

P Ldmdi | 1y L
5 (@ —a)@—0))

andfOrOL:Ois ld d~ 1
qr aqk ) )

L= S 2N g (0 — a7) (@ — ) )

2 dt dt 2;% (¢ — a;)(q — qj)

However, if we use this Lagrangian, the canonical momentum pj, has factor 1/2, namely,

_ oL _lda
Pk = 9 dgp\ 2 dt’
dt
Although the factor 1/2 makes no problem, it is something awkward.
So, we use
dgy dgy,
= —— 8
dt dt )
for Lagrangian. For o # 0
2 1
U==3% (9)

and for « =0

U=~>"10g (6~ a)(a@ — ). (10)
.
The momenta are, then, defined by
oL dqr . dgy.

=" =2 5 =2 11
Dk (qu> dt y Di dt ( )

9 2k

dt



Note that canonical momentum py, for g is not dgx/dt but dgy/dt. The Hamiltonian is given by

H= Z( d;: d%) L= ppi—U. (12)

This Hamiltonian is also twice of the usual one. The equations of motion for all « are given by

gy _ OH _ @:_@:Z 94—
i (13)
dar _ OH _ %:_aj:z 45 —
at  opr PP o <(q o) >a/2+1'
1.3 Variables for shape 7,7, moment of inertia I = r?> and rotation
angle 1

To describe the motion of the shape of the triangle gyq1¢s, let us introduce the shape variable n
and 7] defined by

\/§CI0 _ \fQO
= ;1= (14)
qa—q1’ Go— Q1
We also use 7, and 7, defined by
n+1 n—1 - .
Mo =" My = T S N= ey, =0 — iy (15)

The explicit expression for n, and n, by x; and y;, are

\/§($0($2 — 1) + Yo(y2 — y1))
(z2 —21)? + (2 —1)?

\/§(y0(x2 — 1) — Zo(y2 — y1)>
(x2 —x1)2+ (y2 —y1)®

Ne =
(16)

My =

The geometrical description of these variables are in the following. Using a similarity transforma-
tion and translation, map q; — —1/v/3 and ¢o — +1/v/3, then ¢ is mapped to 7. See figure 1.
The explicit form for this map is

2 (z—q 1>
z— — —-=. 17
V3 <Q2 -—q 2 17)

One can easily check
1 1 V3 qo

- ——, @2 > +——=, and ¢ = n = , 18
T /3 q2 /3 do — 1 & — 0 (18)
using qo + ¢1 + g2 = 0. In this variable two body collisions are expressed by n = £1//3
and oo. Actually, for collision the bodies 0 and 1 at ¢q9 = ¢1 = @, we have ¢o = —2@ and

n = v3Q/(—2Q — Q) = —1/+/3. Similarly, n = +1/+/3 for collision 0 and 2 and 7 = oo for
collision 1 and 2.
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Figure 1: Triangle goq1g2 and the definition of the shape variable 7.

To recover the variables g and g from 7 and 7}, we have to recover size variable r and angle
variable i as follows. Let us define the variable &, whose center of mass is fixed at the origin
subtracting the center of mass 1/3 from the triangle —1/v/3, +1/v/3, and 7,

n _ 2y 1 7 1 7
= —_—_ = — = = — — = —-—_— - ]_
'50 n 3 3 ) 51 \/g 37 52 \/g 37 ( 9)

and replace 7 to 7 to get ék Since the triangle £y&1&2 is similar to the triangle goq1¢o, there exist
r,9 € R that satisfy

—1

— 1#7
\/Z§k£k7 e VY e

Here, 72 turns out to be the moment of inertia,

I=Y (@i +vd) =Y axde =7 (21)

Substituting (20) into (8), we get the Lagrangian for r, v, n, 7,

d'r 2 dw 1 d?] dn 2 ) 1 dnd )
~\at 2%(1+nm) \at RIS T . (22
c <dt) r (dt T ) (ndt ndi)) A d dt +Ulrn,m). - (22)

gx = e’ (20)

Potential for o # 0 is

2¢ 2¢
+ 5| (23)

/2
U=— 1
)| (- vana-van)" (- vana+van)”

ar®

2 (1—1—7777

and for o =0 is
U = —6logr + 3log(1 + nij) — log(1 — 3n)(1 — 37%) + log 2. (24)

Sometimes, it is useful to use pi defined by

o = Em 2(1 4 n7) 1y = 2(1 +nm) (25)
2 M T U —vE) T VB + V)
There is an identity
1 1 1
—+ —+ —=3. (26)
Ho M1 M2



The expression for potentials are for a # 0

2 /2 | a/2 |, a)2
e (uo + 7" g ) (27)
and for a =0
U = —6logr + log(popi12)- (28)

The Lagrangian does not depend on 1, the angular momentum p,, is constant and zero for
the figure-eight solution,

oL o ((di 1 dn  dp
Py = (dw> =2 (G + s (7)) =° (#)
dt

Therefore, the equation for v is,

dyp _ 1 dn dn
at 20+ \lat  Tdt

Integrating this equation, we get the expression for the rotation angle

t 1 dn dn
¢(t)/02i(1—|—7777)< 7t ndt>dt+1/)() (31)

The other momenta are

d
Dr = 267’;7
2 2 (32)
o o dn
= agmza T W dt
The Hamiltonian H is ( 2
p; , (L+n7
n="r o B . (33)
Here, we have dropped the term that proportional to the angular momentum p, = 0.
1.4 Shape sphere
The kinetic energy for the shape variable defines the metric
dndn _ dn? + dng (34)
(I+nm)? (L4032 +ny)?
of the Riemann sphere whose radius is 1/2. Actually, the coordinates
Na U 1
=—Y=— - andZ=1-——— 35
1+n3 +n; L+n2 +n2 L+n2 +n; (35)
satisfy
1\* 1
X242+ (Z-2) == 36
sy (z-3) =3 (36)
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Figure 2: The shape plane and the shape sphere. The black, red, green points correspond to
collisions, Euler configurations, and Lagrange configurations. Left: Projection of a point on the
shape plane to the shape sphere. Right: Cyclic exchange of indexes of ¢ 0 — 1 — 2 — 0
corresponds to 27/3 rotation around the axis (green line) that connect two Lagrange points.
Exchange of 1 <> 2 corresponds to 7 rotation around the axis (black line) that connects a Euler
point and a two bidy collision.

and
dn? + dn;,

(1403 +n3)*
The Euler points (1,,7,) = (0,0), (£v/3) are mapped to (X,Y,Z) = (0,0,0), (£v/3/4,0,3/4).
The Lagrange points (7;,1,) = (0,%1) are mapped to (X,Y,Z) = (0,+1/2,1/2).

Let us use a polar coordinates whose Z’ axes is the line connection two Lagrange points,
7' ==Y =sin(0)/2, X' =1/2 — Z = cos(0) cos(¢)/2, Y' = cos(#) sin(¢)/2. Namely,

dX? +dY? 4 dZ* = (37)

Nz 1 .
= ———— = —cosfsing,
L+n2+n2 2 ¢
Ty L.
=———— = ——sind,
L+n2+n2 2 (38)
1 1 1
=1l—-————=—-——cosf .
1+77925+77§ 5 2cos cos ¢
Inversely,
2
L+ +m = (39)

1+ cosfcos ¢’

(cos @ sin ¢, — sin §)

d (9, = '
and (1z,7y) 1 + cos 0 cos ¢ (0)
Then, we have
dng +dny 1, 2dg?
a1 41
T s st a



and

Nadipy — Nydn,  —sin ¢df + cos 0 sin 6 cos pde

= 42
L+n2+n2 2(1 4 cos 6 cos ¢) (42)
The expression for the three functions u; by 6 and ¢ are,
1 1 1
Ho , M1 = y M2 = (43)

- 1+ cosfcos ¢ 1+ cos @ cos(¢ + 27/3) 1+ cosfcos(¢p —2m/3)"

Then, the Lagrangian for r, 0, ¢ is

L= (Z)Q +§ ((Zz)z + (cos0)? (ﬁ)j +U. (44)

Here, the term proportional to the angular momentum pfb is dropped.
Symmetric polynomials of uj can be expressed by 6 and 3¢,

3(7 — cos(20))

= 45

Ho ottt fia 2(cos 0)3 cos(3¢) — 6(cos 0)? + 8’ (45)

_ 16 (46)

HokH2 = 10 "6 c0s(20) + (3 cos 6 + cos(36)) cos(3¢)’
and pop + o + oo = 3uopr pe by the identity (26).
The cyclic permutation of the indexes 0 — 1 — 2 — 0 makes a transform of n — 7’
3 3 3

_\fQO_>,_\ffh_\f+77 (47)

= 77_ =
72— q Go—q¢ 1-—+/3p

that is equivalent to the rotation in the shape sphere ¢ — ¢ + 27/3. On the other hand, the
exchange of indexes 1 <> 2 makes the rotation n — i’ = —n that is equivalent to § — —6 and
¢ — —¢. See figure 2.

1.5 Extension of the solution in ¢t € R to z € C
We extend the time t € R to z € C.

dgw _ OH dpi _ O
dz  Op,’ dz

= o
di _ W dp _ M

dz ~ 0p; dz  Oqp’

(48)

Integrating this equations with the initial condition for the figure-eight solution at z = 0, we get
the analytic continuation of qx(z), Gk (2), px(2), Di(2).

1.6 Comments
1.6.1 Degrees of freedum

Originally, we have 6 independent variables x; and y,. Then we take their linear combination
qr = Tk +1iyr and § = T — iy, again we have 6 independent variables. Taking the center of mass
frame > xr = > yr = 0, we have 4 independent variables. Similarly, > qx = > ¢x = 0 leave us



4 independent variables. Then, we use {r,1,n,7} or {r,1,n,,ny}, again we have 4 independent
variables. In summary,

xk7ykak:07172 qk7dkak:07172 ~
{ Sap=yr=0 S ge=G =0 <1, (49)
And three sets for shape variables
10,7 & Mgy Ny < 0, 0. (50)

The relations used to convert the variables are just algebraic equations that hold for any number
whether the number are real or complex.

The variables ¢, and ¢ are independent variable, as well as x and y; are independent. We
can see that the equations of motion (13) are equivalent to the equations (5). Let us see the
Euler-Lagrange equations for the Lagrangian £, closely. The partial derivative of U by ¢ for
a # 0, treating g and § are independent variable, is

ou 1 gk — 45
= —_ S = 7 7 51
Aqp, Zj: (qk — 4;)*/>T1 (@ — G;)*/2 ; ((ax — ¢j) (@ — G;))>/*+! (51)

and for a =0 is

Z ’“_qj — (52)

(qx — q5) - (ar — a5) (@ — Gj)

Y

Oqx

Therefore, for all a including o = 0,

ou dk — Gj
00~ T T ) )

On the other hand, the partial derivative £ by dgy /dt, treating dgi /dt and dgy /dt are independent
variables, is

oL _ 9 daw dar \ _ dax (54)
o (ax B ok \ dt dt S odt
dt dt
Therefore, the Euler-Lagrange equations by ¢ yield
d oL ou gy de — qj
[ — R — :> —_— = — = = . 55
dt 5 (dge\ Ogx  dt? 2 ((ar — a5) (G — G;))>/>+1 (55)
dt
Similar calculations by §j yield
d*qx qk — 45
= — ) 56
Pz DY s R e 0)

The equations (55) and (56) are equivalent to the equations of motion for z; and yj in (5).

1.6.2 A relation of ¢ and ¢ for “physical” solution

We call a solution “physical” when the value of the solution is real for real time,

{z(t),y()} : “physical” < z(t),y(t) € R for ¢t € R. (57)



Therefore, for “physical” solution, ¢(t) = z(¢t)+iy(t) and §(t) = 2(t) —iy(t) in t € R are mutually
complex conjugate.

Analytic continuation of the “physical” solution, however, makes 2(z), y(z) complex for z € C.
Therefore, q(z) = z(z) + iy(z) and §(z) = x(z) — iy(z) are no longer complex conjugate of each
other. Are there any relation between g and ¢ 7 Yes. To see this relation, remember a fact of
analytic function.

In general, for a function f(z) which is analytic in a region D that contains a real interval,
(f(2*))* (* represents complex conjugate) is also an analytic function of z, because the following

limit
i LI =G (17 00) - 1)

R0 h h—0 h*

yields a fixed value for any direction of h — 0. We write this function f7(z). For a series
expansion f(z) = Y anz", fT(z) is given by f1(z) = Y a*z". For example, sin'(z) = sin(z),
cos’(z) = cos(2), and for f(z) = e, f1(2) = e7%. Sometimes fT(2) is called a “mirror image”
of f(2). The correspondence between f(z) and f7(z) is one to one. All information for f(z) is
contained in f(z).

If f(z) is analytic in D and f(t) € R for ¢t € R, then ff(z) = f(z) in D. This is because
fT(t) = (f(t*))* = f(t) for t € R, and analytic continuation keeps this relation for ¢ € C. If this
function is even, f(—z) = f(z), then f(i7) is real, and if odd then it is pure imaginary for 7 € R.
This is obvious by the series expansion of f(z) at z = 0. Another proof of this property is given by
the relation f(z) = f7(z) = (f(2*))*. Namely, f(2)* = f(z*). Then, f(it)* = f(—ir) = £f(iT).

Now, let us back to the relation of ¢ and ¢. For “physical” solutions, including the figure-eight
solution, both z(z) and y(z) are analytic around the real axis z = ¢ € R and have real value on
the real axis. Therefore,

(58)

for “physical” solution, z'(z) = z(z) and y'(z) = y(2). (59)

Then,

for “physical” solution, §(z) = ¢'(2) = (¢(z*))* and ¢(2) = ¢ (2) = (§(z*))* for z € D.  (60)
Thus, for physical solution, ¢(z) is a “mirror image” of ¢ and all information for ¢(z) is contained
in g(z). See figure 3. Similarly, nf(z) = 7., 77;5(2) =1, (See the equation (16)), rf(2) = r(z) and
YT (2) = (2), therefore n = 7 and 7T = 5, for “physical” solution.

Note that even for “physical” solution, ¢(z9) = x(z0) + iy(z0) = 0 for zp ¢ R does NOT
always imply ¢(z0) = x(20) — iy(z0) = 0, although ¢(t) = x(¢t) + iy(¢f) = 0 in ¢ € R always imply
4(t) = x(t) —iy(t) = 0. In general,

for “physical” solution, ¢(z9) = 0 < G(z5) = 0. (61)

Because, G(z3) = q¢'(23) = (q¢(20))* = 0. For example, x(t) = 5t and y(t) = 5t is a “physical”
solution for d%z/dt* = 0 and d*y/dt> = 10, the free fall problem. Then ¢(z) = 5(z + i2?) and
G(z) = 5(z — iz?) surely satisfy ¢'(2) = G(z) and ¢'(2) = q(z) and q(i) = 5(i — i) = 0 while
G(i) = 5(i +14) = 10 # 0. Surely, g(—1i) = 5(—i + i) = 0 is satisfied.

1.6.3 Comments for analytic continuation and periodicity f(z) = f(z+ 1)

Let functions f(t) and g(t) be equal on the real axis, and both are analytic for a region that
contains the real axis. Then h(z) = f(z) — g(z) = 0 for the region, and analytic continuation of
the function h(z) = 0 yields h(z) = 0 for all z € C. Therefore,

ft)=gt)onteR = f(z) =g(z) for all z € C.

10
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Figure 3: For “physical” solution, ¢(z) and ¢(z) are “mirror image” of each other, namely,
G(z) = (q(=*))*. Figures for q(z) and §(z) for figure-eight solution for o = 2 with period T' =1
are shown. The upper row from left to right: |¢(z)|, R(¢(2)), and J(¢(z)). The lower row from
left to right: |G(2)|, R(G(2)), and I(§(z)). The region z =t +ir, t € [0,1], 7 € [-0.25,0.25] is
shown. The white region shows areas where values are too positively large or negatively large.
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a branch point

0 E 1

Figure 4: The function f(¢) has period 1 on the real axis (the solid line). Then, f(C;z) =
f(EC;z+ 1) (the thick solid lines), while f(C;z) # f(CE;z+ 1) (the dashed line) if the closed
path C"'ECE~! encloses a branch point. Therefore, f(z) has no period along the dashed line,
in general.

Be careful. This may be correct in some sense, and at the same time be incorrect in other sense,
because both of the function can be multivalued. In one branch f(z) = g(z) may holds, while in
other branch f(z) # g(z).

For multivalued function, let us specify the path on what we integrated from the origin to z.
We write the function f whose initial point is 0 and integrated on the path C be f(C;z). If we
first integrated on Cy and then on Cy to reach z, we write f(C1Cs;z). So, the above equation
should be

ft)=g(t) ont e R= f(C;z) =g(C;z) for all z € C and all path C. (62)

For example, let f be a function with period 1, f(t) = f(t + 1) on the real axis. In our
notation, f(E*t) = f(EE't+1), where path E* and E represent the path on the real axis with
length ¢ and unit length. Then

f&)=ft+1) onteR= f(C;2)= f(EC;z+ 1) for all z € C and all path C. (63)
If the path C"'ECE~! encloses a branch point, f(C;z) # f(CE;z +1). See figure 4.

2 The figure-eight solution

2.1 Properties of periodic solutions

The second derivative of the moment of inertia is
d?I d dxy, dyi
22 9% Hk
iz = 2 2 (x’“ a TV

(%) (4)) e n)r

For o # 0, the second term yields —2aU. Therefore,

$_22<(%>2+<%>2> 20U = 4E + (4 — 20)U. (65)

On the other hand, for a =0, Y (210/0xy, + yr0/0yr)U = —3. Therefore
a1 dee\°>  [dyr\’
dt?_2z<<dt) +(dt> — 6. (66)

12



2.1.1 Properties of a periodic solution for a # 0,2

Integrating the relation (65) for one period, we get the virial theorem,

= [ () () o o i

The left hand side is the action variable or the abbreviated action J defined by

]{Z (dxkd Ty + 4y dyk> (68)

Integration of E = 1/2 > ((dxy/dt)* + (dyx/dt)?) — U for one period yields ET = J/2 — [ dtU =
J/2 — J/a. Here, we have used the relation (67). Therefore, for a # 0, 2,

2
J = - 2ET. (69)

Substituting T' = dJ/dE, we get J = 2a/(a — 2) x EdJ/dE. Integration of this relation yields,
J = D|E|(@=2)/() (70)
where D is a constant and scale invariant.

2.1.2 Properties of a periodic solution for a = 2

The case o = 2 is special. In this case d?I/dt?> = 4E. Integration this relation yields I =
2Ft? + cit + ¢y, where ¢; and ¢ are constant. Therefore, for any periodic solution in o = 2,

E=0and I =c. (71)
The action variable J = D is scale invariant.
2.1.3 Properties of a periodic solution for a =0
Since > (xx0/0xk + yr0/Oyr)U = —3 for a = 0, the action variable is simply
J =3T. (72)

Therefore, J = 3dJ/dE yields
J = DelEI/3, (73)

where D is a constant and scale invariant.

2.2 Properties of the figure-eight solution

The figure-eight solution is a solution of the equation of motion (5). The three bodies chase each
other on the same single orbit that looks like “8” with equal time spacing. Namely, for period
T, the solution ¢k (t) is described by a single function ¢(t),

T
qk(t):q(t—i-%) , for k=0,1,2. (74)

13



q1(tguter + 1) q2(tEuter + 1)

qo(tBuler + 1)

Figure 5: Euler configuration and orbits of the figure-eight solution. Red, green, blue points
represent g (tguler), K = 0,1,2 respectively. Curves represent the orbit gi(tguer + t), for t €
[0,7T/3].

05}

0.0

Figure 6: The potential function p in @ = 2 for n = = + ity on the path z = tgyler + ¢7. The red
circles represent the contours for ;1 = 0 and the colored region represents p > 0.

The center of mass and the total momentum is set to zero,

Z qr = Zpk = 0 and similar equations for G, p;. (75)

Since the left and right lobe of the orbit has the same area with opposite direction, the solution
has vanishing angular momentum,

dyr dzxy,
Z (mkdt - ykdt) =0. (76)

The figure-eight solution takes Euler configurations and isosceles configurations alternately
in the interval T/12. In the following sections, the behavior of the figure-eight solution around
an Euler configuration and an isosceles configuration will be discussed.

2.2.1 Around an Euler configuration

The figure-eight solution has 6 Euler configurations when one body is at the origin and momenta
of other two bodies are equal. Figure 5 represents one of the Euler configurations when gy = 0
and dq; /dt = dga/dt. Let this moment be ¢t = tgyjer-
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Since at t = tguler, o = 0, ¢1 = —q2 and p; = ps, the time reversal and index change 0 — 0,
1 <> 2 is equivalent to the rotation of 180 degree around the origin. Nemely,

QO(tEuler - t) = —qo (tEuler + t)a

77
71 (tBuler — 1) = —q2(tBuler + 1), and ga2(tpuer — ) = —q1(tEuler + 1) (1)
Analytic continuation keeps this relations
qo (tEuler - Z) = —qo (tEuler + Z), (78)
q1 (tEuler - Z) = —q2 (tEuler + Z)a and q2 (tEuler - Z) =—q1 (tEuler + Z)
for z € C in some region including the real axis.
Let t,7 € R. Since Gx(z) = (gx(2*))" in this region and by (78),
Cjo (tEuler —t+ ZT) == (QO(tEuler —t— ZT))* = - (QO(tEuler +t+ 17-))* . (79)

Similarly,
G (tpwter — t+i7) = — (g2(tpuler +t + 7)), G2(tButler — t +47) = — (q1 (tRwer + +i7))" . (80)
For the shape variable, it follows
N(tguter —t +147) = — (N(tButer + 1 +i7))" . (81)
Finally, for the path z = tgyler + 7,
do=—(q90)" 1 = —(q2)", @2 = —(q1)", (82)

and
=—(n)" (83)
Let n = x + iy, «,y € R on this path. Then 77 = —(n)* = —(« — i¢y). Then the kinetic energy is

given by
_,dndi o (dz\?  [dy)\?
_ 20NN _ 2 2y-2 [ (4T ay '
K = (1+4+n0) o (1—2°—y°) <(d7—) + (dr (84)

The potential function for o = 2 is

(1—a?—y?) (¢ = 1/V3)2 +y* = 4/3) ((x + 1/V3)* + y* — 4/3)
(@ =1/v3)2 +9?) ((z + 1/v3)* + 4?)

p= : (85)

Therefore, the sign of i for a = 2 will change on three circles 22 +y? = 1 and (z+1/v/3)? +¢? =
4/3. Since, the kinetic energy K > 0 in the region 22 4+ y? < 1 and K = pu for periodic solution
in @ = 2, the potential function g must be positive or zero. Therefore, the orbit of  and 77 on
this path must be confined in the first region that contains the origin. See figure 6.

2.2.2 Around an isosceles configuration

The figure-eight solution has 6 isosceles configurations when one body is on the x-axis and other
two bodies are mutually opposite side of the x-axis. Figure 7 represents one of the isosceles
configurations when ¢qq is on the x-axis and 1 = x3, y; = —y2. Let this moment be t = tis,.
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qO(tiso + t) q2(tiso + t)

aq1 (tiso + t)

Figure 7: Isosceles configuration at ¢ = t;5, when the point gy is on the x-axis, and orbits of the
figure-eight solution. Red, green, blue points represent g (tiso), & = 0,1, 2 respectively. Curves
represent the orbit gx(tiso + t) for ¢ € [0,77/3].

Since time inversion at t = t;5, and exchange of the index 1 «++ 2 is equivalent to the inversion
with respect to the x-axis, namely,

:EO(tiso - t) = mO(tiso + t);

86
xl(tiso - t) = xZ(tiso + t)a and mZ(tiso - t) = wl(tiso + t)v ( )

and

Yo (tiso - t) = Y% (tiso + t)a

87
Y1 (tiso - t) = Y2 (tiso + t)a and Y2 (tiso - t) =M (tiso + t) ( )

Since xg(tiso+1) is an even function of ¢, xq(tiso+147) is real. Also, yo(tiso+t) is an odd function
of t, yo(tiso + 97) is pure imaginary. For z = ti5, + i7, let zg = z and yo = iy, z(7),y(7) € R.
Then, for z = tigo + iT

q0(2) = w0(2) +iyo(2) = z(2) — y(2) € R, (88)
Go(z) = z0(2) —iyo(2) = z(2) + y(2) €R
On the other hand,
(21 (tiso +i7))* = (22(tiso — i7))* = 2h(tiso +iT) = To(tiso + i7), (59)
(yl (tiso + 'LT))* = _(y2 (tiso - ZT))* = _y; (tiso + 7;7') = —2 (tiso + 7;7')
yields
(21 (tiso +17))" F 1(y1(tiso + 17))" = za(tiso + 17) £ tya(tiso + 7). (90)
Namely, for z = tisosceles + T
(01(2))" = q2(2) and (q1(2))" = G2(2). (91)

Therefore, for some interval of 7, gy are on the real axis and ¢; and ¢o are mutually complex
conjugate. So, the triangle goq1¢o remains to be an isosceles triangle.
Then, the shape variable 7 is pure imaginary,
V3 V3 qo

n= = € iR. 92
- ()" —a (92)

Therefore, it is natural to define

N(tiso +i7) = i¢(7), ¢ €R. (93)
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o0l el

Figure 8: Three circles in the shape plane 7 (left) and shape sphere (right). The y-axis, the solid
circle, the dashed circle on the shape plane represent 7 = i¢ (¢ € R), |n — 1/v/3| = 2/4/3, and
In + 1/4/3| = 2/+/3 respectively. The points +o0o, —1/4/3, and +1/+/3 represent the collision of
g1 —q2 — 0,9 —q1 — 0, and go — g2. The three circles on the shape plane correspond to the
great circles of longitude 0, 27r/3, and 47/3 on the shape sphere. The points 0 and 4+/3 stands
for Euler points, and the points £1 for Lagrange points.

For the other isosceles configuration at t = tiso + T/3 41, qx(tiso + T/3+1t) = qrt1(tiso +t) make
the cyclic permutation of indexes 0 — 1 — 2 — 0. Therefore, using (47),

| = V3 12 (14iV3((n)
n(tlso+T/3+lT)ll\/§C(7-)\/§+\/§<12\/§<(7—)> (94)
and using the same permutation again,

N(tiso +2T/3 +i1) = —m = —(n(tiso + T/3 +1i7))". (95)

Namely, in the complex plane, 7(tiso+47) is on the y-axis and n(tiso+7'/3+i7) and n(tiso+27'/2+
iT) are on each circle whose radius is 2/4/3 and whose center is 1/v/3 and —1/+/3 respectively.
Similarly, 7(tiso + ¢7) is also pure imaginary. There is no obvious relation between n(tiso + 97)
and 7)(tiso + ¢7). They are two independent variables.

More about qi: Let ¢qo = —2a,q1 = a—1ib,q2 = a+iband gy = —2a,¢1 = a+i8,q2 = a—1if.
Then, the moment of inertia is

r? = qoGo + q1G1 + 242 = 6aa + 2b3 = constant. (96)

The equation for vanishing angular momentum yield

i qu_ do _ da\ (B db
qu —dk 6<adz adz)+<dz B— ) (97)

So, we still have two independent variables.
In this parametrization, the shape variables n = iv/3a/b and 7 = —iv/3a/3. Then,

_ 3aa r? — 2b5

M= = s (98)

Therefore, np — —1 if b3 — oo.
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3 Numerical integrations by Mathematica

3.1 Integrations for complex variables on complex path

Mathematica can treat differential equations df,(t)/dt = g,(t) for complex variables f, and g,.
However, the independent variable ¢ must be real.

So, to integrate the equations of motion for z = z; to zy, we take a complex number e that
is proportional to zy — z;. Then, using dz = edo, o € R, we rewrite the equations of motion in
the following,

da _ OH dpi oM

do Opr do oGy’ (99)
dq. _  OM dpy _ _ OH

do  0p; do Oqi”

There are two choices for e and o, 1) e = (25 — 2;) /|2y — z;| and 0 € [0, |z — 2], 2) e=25— 2
and o € [0,1]. I'm using both.

3.2 Method to take a proper branch in the equation of motion

For any multivalued function, Mathematica returns a principal value that is defined by the
Wolfram language. This can make artificial discontinuity when the denominator in the equation
of motion ((g; — qr)(g; — @x))*/**! passes through the branch cut.
There is no problem for & = 2 and 0. The terms are ((q; —qx)(q; — Gr))? and (q; —qx) (G5 — Gr)-
For o = 1, Newton potential, the denominator in the equation of motion is ((g; — qx)(G; —
Gx))3/2. In this case, we can introduce three auxiliary variables r;;(z) that stand for ((g; —
@) (@ — dx))*/? and make the equations of motion

dyqy, _dp; g5 — Gk
—— = € Dy do =e Z 3]{) y
i J

do r
dgx dpr 4 — Gk
Ty =Pk =€ ; . (100)

drij 1 dgi dg;\ . - (dq dg;
do _2rij ((da do (@ qJ)+(qz q]) do do '

In the last equation, there is no e in the both side. I didn’t do this calculation.
For general o, for example av = v/2, we can introduce additional three more auxiliary variables
R;j that stand for rf;. Then we add the equations for R;j,
dRij _ O(Rij d’l“ij ) (101)
do Tij do

I didn’t do this calculation.

3.3 Ask “NDSolve” to warm “an egg” with “other eggs”

In this section, a tip to integrate a function of orbit ¢(¢) and p(¢) that are a solution of an
equation of motion is described. For example, how to calculate the action variable J with very
high accuracy,

T
J:/O > pe(t)pi(t)dt. (102)

18



Here is my method. I’'m not sure this is the best or not. Just give the differential equation
for J (“an egg”) to “NDSolve” as well as the equations of motion (“other eggs”),

H H
== and G = S (i (103)
with initial condition J(0) = 0. Then, “NDSolve” will integrate this equations and gives us
J = J(T) with accuracy we want.

Professor Andrzej J. Maciejewski told me another method at the seminar. Add an option
“InterpolationOrder -> All” to “NDSolve”. This works fine. Thanks.

Background: “NDSolve” of Mathematica gives an interpolating function ¢(¢) and p(t). In my
experiences, we can control the accuracy of the end point, ¢(t¢) and p(ts) choosing the option
parameters “WorkingPrecision”, “AccuracyGoal” and “PrecisionGoal”. So, we can get q(ty)
and p(ty) with very high accuracy. However, the accuracy at intermediate time, 0 < ¢ < t; are
poor. In my experiences, it is order 1078 or something. So, even if we calculate ¢(t) and p(t)
very accurately by NDSolve, the integration using “NIntegrate” gives the value with accuracy of
order 108 or something. The two method shown above resolve this issue.

4 Numerical calculations for a = 2, a strong force potential

4.1 The initial conditions and the accuracy

We fixed the period T'= 1. The initial condition for the isosceles configuration with 40 digits is

qo =0.19743123404582463292775384213515165845219778006226

104
+0.153778303125820752977467039039683857006589951759227 (104)

It takes 0.83 sec to calculate ¢ € [0,7/12]. The values at ¢t = T//12 that must be 0 represent
an order of accuracy.
qo(T/12) = 2.9 x 1072 4+ 2.7 x 107264,

105
p1[T/12] — p2[T/12] = —6.6 x 1072* — 5.0 x 10~ 24. (105)

Using the same initial conditions, the calculation for ¢ € [0, T] takes 9.28 sec. The periodicity
that should be 0 also represent an order of accuracy squared.

2 (@(T) = ar(0)) (@(T) — 4(0)) = 5.2 x 107,

106
> (p(T) = pr(0)) (B:(T) — pi(0)) = 1.4 x 107°7. (106)

So, we can trust this numerical calculation with accuracy of order 1018,

4.2 Overview of the singularities

Using the initial condition, we calculated the function ¢(z) = ¢o(z) in the complex plane. The
integration path to z =t + 7 was taken 2 =0 — ¢t — t +i7.
We can see singularities at ®(z) = 1/12+ k/6, k=1,2,3,...,6, (z) ~ £0.1, see figure 9.
In the region that contains the real axis and not contains any singularities, the function
qr(2), @k (2), pr(2), Pi(2) are analytic. Therefore the periodicity qx(z) = qr(z + T) keeps. Then,
for a small fixed 7, curve gi(t +i7), t € [0,T] in the complex plane make an closed loop. For
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Figure 9: The absolute value of ¢(z) for the figure-eight solution for o« = 2. The left is a 3D
plot. The x and y direction is ¢ and 7 for z = ¢ + i7 and the vertical direction is |g(z)|. Values
lg(2)| > 2 are cut offed. The right is a contour plot for the same values. We can see singularities
at z=1/12 + k/6+ito, k = 1,2,3,4,5,6 and 19 ~ 0.09.

Figure 10: Deformations by 7 of the figure-eight solution for o = 2. The left column: ¢(t + i)
for t € [0, T). Top to down, 7 =0, 0.05, 0.09. The right column: Same for §(¢t+i7). Red, green,
blue points represent the body 0, 1, 2 respectively.
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Figure 11: Figure-eight solution for « = 2: ¢(1/12 4 ir) (left) and ¢(1/12 + i) (right) for
7 € [0,0.09]. Red, green, blue points represent the body 0, 1, 2 respectively. Edges without
point represent 7 = 0, while with point represent 7 = 0.09.

o.15| o.wsl /‘\

7 = 0, this loop is the figure-eight. Making the value of 7 slightly large, the curve g (t+i7) is also
a closed curve, namely, a slightly deformed figure-eight. Larger value of 7 makes a deformation
large. Then, near 7 ~ 0.1, something singular will happen. See figure 10.

To see what is happened near a singularity, we trace the behavior of ¢(z) for z = 1/12 —
1/12 + 0.09:. See figure 11. What we can see from the figure 11 is z = 1/12 +i7, 7 € R,

Go(2) = = (20(2))", @1(2) = = (2(2))", @(2) = —(@(2))", (107)

that is shown in (82).

4.3 A “half collision”

The other thing we can see from the figure 11 is, for z — zo: singularity, the functions looks
to behave,

900(2),q2(2) = Q . q1(2) = —20Q,
Go(2),q1(z) = —Q" . G2 =2Q".
This is a simultaneous “half collision”.

If the simultaneous “half collision” (108) really takes place, the moment of inertia I
is I =3, qudr — 3QQ*. Therefore,

(108)

Q" — g (109)

And the shape variables behave

_ V340 . V3Q _ L
7 - Q+20Q 3
_ V3do —V/3Q" b

—~—T = )
G2 — q1 2Q* + Q* V3

This limit value 41/v/3 gives the singular points of the shape potential p(7, ),

(1407 4 4
“(”’”)( 2 )<1+(1—\/§n)(1—\/§ﬁ)+(1+\/§n)(1+\/§ﬁ)>' (1)

(110)

R

endif.

4.4 Behavior of the shape variables

Then, let us investigate the behavior of 7(z), 7(z) more precisely.
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Figure 12: Figure-eight solution for o = 2: Behavior of the shape variables n(1/12 4 i) and
71(1/12447). The solid curve represents 7, the dashed 7. The red points represents the values at
7 = 0.09. The black points stands for +1/ V/3. The red and black points are definitely separated.

4.4.1 For the path z =0 — 1/12 (Euler config.) — 1/12+ir

On this path, the speculation (110) is doubtful. It may be wrong. Figure 12 shows the behavior
of n(z) and 7(z) integrated on the path z =0 — 1/12 — 1/124 0.097 and shown for the interval
z=1/12 = 1/124 0.09i. Although the point z = 1/12+ 0.09¢ is considerably close the singular
point, figure 12 shows that the variables n and 7 are definitely separated from the singular points
n =1/v/3, 7 = —1/4/3 and not look like to come to the singular point. The right red point is
0.5577...—0.00696...i, while the black point, the singular point of the potential is 1/v/3 = 0.577....
The separation is 0.02. This is clearly not zero in this precision.

On the other hand, the relations (107) is correct on this path. Therefore, the relation for n

and 7 is
7= V3 o _ V3 (—q0") — —)". (112)
22— —q¢F+ gt

This is the equation (83) which can be validated by figure 12.

4.4.2 For the path 2=0—1/12+¢— 1/12+¢+14/10

Then, we calculate  and 7 for the path z — 1/12+ e — 1/12 4+ € +9/10. The results are shown
in the figure 13.

(WorkingPrecision=90, AccuracyGoal=PrecisionGoal=70)

Figure 13 clearly show that 7(1/12+ €+ i7) passes through the singular point 1//3 for some
value of € € [0,1/1000]. However, for the same value of €, 77 doesn’t pass the singular point
—1/V/3.

Namely, figure-eight solution with o = 2 doesn’t have simultaneous “half collision”. A “half
collision” 7(z) — 1/+/3 takes place on the line slightly right of ®(z) = 1/12, while a “half
collision” 7j(z) — —1/+/3, takes place slightly left of R(z) = 1/12.

The orbit of n and 7 for the line R(z) = 1/12 in the figure 13 have bounce near (£1/+/3,0).
These bounces are due to the potential barrier. See figure 6. The orbits are confined in the first
region that contains the origin in the figure 6.

4.4.3 For the path 2 =0 — k/6 (isosceles) — k/6+ it

The points z = k/6, k = 0, 1,2 are isosceles configurations.

See figure 14. For the path z = k/6 (isosceles) — k/6 + it for k = 0,1,2,..., 7 € R, the
triangle goq1¢2 keeps isosceles triangle. 1) For the path & = 0, it looks like gg — g2 — 0 and
do — qz — oo for 7 — co. So, n — 1/4/3 and i) — —1/+/3. 2) For the path k = 2, ¢; — gz — 0
and it looks like g3 — Go — 0o. It looks like n — a large finite and 77 — a small finite.

The two observation 1) and 2) for 1,7 are inconsistent. If n — +1/1/3 for some k, the n
must be one of £1/4/3 or oo for any k. And, if 7 — oo in some k, the n must be one of £1//3
or oo for any k.
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Figure 13: Figure-eight solution for & = 2: The behavior of 7 and 7 on the path z — 1/12+¢€ —
1/12 4+ € 4+ i/10. From the top to buttom e = —2/1000,—1/1000,0,1/1000,2/1000, and the
collection of them. Although the curve with € = 0 has sharp kink, neither 7 nor 7 pass over the
singular point +1/v/3. The curve for  on € = 1/1000, the 4th row, looks like pass over 1/+/3,
however, it passes through the right side of the point by 0.00045. For 7 on ¢ = —1/1000, the
second row, is the same. The curves are symmetric for the sign of € by (81).
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Figure 14: Figure-eight solution for o = 2: Variables for the path z = 0 — k/6 (isosceles) —
k/6 4 i. Top row from left to right: ¢;(2), ¢;(z) and n(z) (solid cueve), 7(z) (dashed curve) for
k = 0. Middle row from left to right: ¢;(z), G:(z) for k = 2. The bottom from left to right:

S(n(z)) and I(7(2)) for k = 2.
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Figure 15: Figure-eight solution for a = 2: &(n(2)) (left), (7(z)) (middle), and I(n(2))S(7(z))
(right) for the path z = 2/6 — 2/6 + 5i.

We did a calculation for the path 2 =0 — 2/6 — zy = 2/6+5:. See figure 15. The values are
n(zy) = 1223.8858i, 7(z5) = 0.000811628534, and n(zf)7(zy) = —0.99334066. This calculation
suggests that n — a large finite, 7 — a small finite and 7 — —1 for 7 — oco. Note that np = —1
is a singular point of the kinetic energy and the potential function for the shape variable.

5 Numerical calculations for a = 0, the log potential

5.1 Initial conditions and the accuracy

(Working precision is 50 digits and accuracy goal is 40 digits.) The initial values for T =1 is

g0 =0.10241289852920214438174926754912368054949503934674
+0.0416970320006971873831905510653686549969066245879341, (113)
2 =q", ¢1 = —qo — ¢2-

Po = go = — 1.2869890410757253809138483878789425507834685174612
—0.1746642724401861491646806934555384973216142917124 11, (114)
ﬁ? = - (ﬁo)*a
p1 = — Po — p2 = 0.349328544880372298329361386911076994643228583424811.

The values that must be zero are qo(7/12) = —1.68 x 10743 +6.14 x 10743, > (qk(T) —
04(0)) (@ (T) = G (0)) = 147 x 10, 3= (pe(T) = pr(0) ) (Bi(T) = 5i(0) ) = 143 x 107,
The total energy at t =0 and t =T are
E(0) = —6.156648138369543176185659263404723109168330836671,
E(T) = —6.156648138369543176185659263404723109168147762003, (115)
E(T) — E(0) = 1.83 x 107,

For logarithmic potential, the action variable satisfies J = 3T, the equation (72). In this
numerical calculation takes T'= 1. So J must be 3. Actually we get

T
J = / Zpkﬁidt = 3.0000000000000000000000000000000000000002036092749, (116)
0

J—3=2.04x 10740,
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Figure 16: Figure-eight solution for v = 0: The left column represents |¢(z)|, the middle |K(z)],
and the right |I(z)|. The upper row is a 3D view, and the lower is a contour map.

5.2 Overview of the singularities

(The working precision is 50 digits, accuracy goal is 30 digits.) The singularities take place
around z = k/6+it, k =1,2,3,...,6, 7 ~ £0.037. At the time ¢t = k/6, the configuration is
isosceles.

Then, we investigate the behavior of ¢ and ¢ on the passes 0 — 0.037¢ and 0 — 1/6 —
1/6 + 0.037i. See figure 17 and 18.

For this logarithmic potential, gg and ¢o look to behave qg,g2 — @ € R for z = 0 — 0.037i.
On this path, the relations ¢1(z),q1(2) € R, (g0)* = q2(2), (Go)* = g2(2) are satisfied. The
behavior is completely different from that of o = 2.

-0.20 -0.15 -0.10 -0.05

-0.02
-0.04

Figure 17: Figure-eight solution for @ = 0: ¢gx(2) and ¢r(z) on the path z = 0 — 0.037i. The
edge with a point is z = 0.037:. Red, green, blue stand for 0,1,2 respectively. It looks like
qo, g3 — Q € R. z = 0 represents an isosceles configuration.
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Figure 18: Figure-eight solution for o = 0: ¢ (z) and gx(z) on the path 2 =0 — 1/6 — 1/6 +
0.037i. The part of z =1/6 — 1/6 + 0.037i is shown, The edge with a point is z = 1/6 4 0.037:.
Red, green, blue stand for k = 0,1, 2 respectively. On this path, it looks like ¢y, 1 — —Q.
z = 1/6 represents an isosceles configuration.
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Figure 19: Figure-eight solution for a@ = 0: Left and right column represent q(t+47) and §(¢t+i7)
respectively, for ¢ € [0,T] with fixed 7. Top to down row represent 7 = 0,0.01,0.02,0.03 and
0.037. Red, green, blue points stand for t = 0,7/3,2T/3.
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Figure 20: Figure-eight solution for o = 0: n(k/6 + i7)(solid curve) and 7(k/6 + i7T)(dashed
curve), 7 € [0,0.037] for the figure-eight in logarithmic potential. The left stands for k = 0 and
the right for k = 1. 1) goes to 1/+/3 in the left (k = 0), and 7 goes to —1/+/3 for the right(k = 1).
The end point with red point stands for 7 = 0.037. For & = 2, n and 7} are pure real, that is
shown in figure 21. Configurations at z = k/6 for k = 0, 1,2, ... represent isosceles configurations.

5.3 Behavior of the variables
5.3.1 For the path z =0 — k/6 (isosceles config.) — k/6+ it

We investigate 7 and 7 on the path z = 0 — k/6 — k/6 + 37i/1000. The configurations at
z=k/6, k=0,1,2,... are isosceles configurations. See figure 20. For k = 0,  goes to 1/+/3,
while for k& = 1, 7j goes to —1/+/3. The difference between 7 and the singular point at 7 = 37/1000
is n(37i/1000) — 1/v/3 = —6.13 x 1076 + 0.003767. Thus, 1(z) goes to the singular point a little

bit above z = 37:i/1000.
As shown before, for k& = 2, namely on the path z = 1/3 — 1/3 + i7, n and 7} are pure

imaginary. The values are
n(1/3) = — 2.697 x 10759 + 4.25412397697774120270372120091557943541686239463631,

71(1/3) = — 2.697 x 107°° — 4.2541239769777412027037212009155794354168623946363,

This must satisfy n(1/3) +7(1/3) = 0. And
n(1/3 + 0.003767) =5 x 10747 + 354.397560792774089474729999640694174678172731184854,
7(1/3 4 0.00376i) =0 x 107°° — 1.6001247850505522871270219532920776564783048707308i.
(118)

See figure 21.

The orbits of n(z), 7(z) for z = € = e +ir, 7 € [0,0.06] with e = k£/1000, k = —2,—-1,1,2,
without k = 0 are shown in figure 22.
5.3.2 For the path z =0 — 1/12 (Euler config.) — 1/12+ 3:

The configuration at z = 1/12 is an Euler configuration. The integration pathisz =0 — 1/12 —
1/12 + 3i. The figure 23 shows the behavior of ¢,§,n and 7 for z =1/12 — 1/12 + 3i.
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Figure 21: Figure-eight solution for & = 0: The shape variables n and 7 for z = 1/3 — 1/3 +
0.037i. On this path, the variables are pure imaginary. Solid line represents (7)) and dashed
line §(7). At z=1/3, n+7=0. n— oo for z — 1/3 + (0.037 + ...)i. Configuration at z =1/3
is an isosceles configuration.

Figure 22: Figure-eight solution for o = 0: The orbits of shape variables n(z) (solid curve) and
7(z) (dashed curve) for the paths z = ¢ — € + 0.6¢ with ¢ = £/1000, k = —2, —1,1,2 without
k = 0 are shown. The curves for right to left stand for £k = —2, —1,1,2. Configuration at z =0
is an isosceles configuration.
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Figure 23: For the path z = 1/12 — 1/12 4+ i7. The top row represents ¢(z) (left) and ¢(z)
(right). The middle figure represents 7(z) (dashed curve) and n(z) (solid). The bottom row
shows closeup view of 7(z) (left) and 7(z) (right). In the lowest figures, the origin is +1/+/3.
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On this path, gy and ¢ or ¢y and ¢; take “binary rotation”. For 7 — oo, it looks like
n—1/ V3 and 77 — —1/4/3 where “half collisions” take place.

6 Series expansion around a “collision” point

6.1 A “full collision”, “half collision”, and simultaneous ‘“half collision”

In the real space-time, t, z(t), yx(t) € R, a two-body collision take places when z; —x; — 0 and
¥i —y; — 0, equivalently ¢; —¢; — 0 and ¢; — ¢; — 0 for ¢ — . In this case, both 7,7 tend to
the same singular point #1/v/3 or co. For example, both 1 and 7j goes to 1/v/3. We would like
call this case a “full collision” or “real collision”.

In the complex time z, however, it is possible to behave one of 1 or 7 goes to a singular point
while the other goes to normal point. For example, n — 1/4/3 and 7 — a ¢ {£1/V/3,00}. We
will call this a “half collision”.

If two half collision take place for the same z — zp, we will call this a simultaneous “half
collision”. For example, n — 1/\/3 and 77 — 71/\/§ for z — 2.

6.2 A series expansion around a possible simultaneous ‘“half collision”
for a =2

In this section, we will show that a possible simultaneous “half collision” on the path z = tguer+i7
does not behaves like the observation. In other words, the observed “half collision” are not
simultaneous nor take place on the path z = tgyler + ¢7. The half collisions take place at slightly
different places, z = tguler = € + @79, € # 0, that is suggested by the numerical calculations.
Actually, we will show that possible simultaneous “half collision” on the path z = tgyler + @7
for figure-eight solution in o = 2 behaves
1 -1

n= ﬁ(l — 2By =) 4 ), 7= ﬁ(l —22B(ry =123 4 ) (119)

for 7 — 79 — 0. So, the solution approaches the singular point from exactly left for n and from
exactly right for 7. This behavior is clearly different from the observed behavior. See figures 12
and 13.

The moment of inertia r2 is constant for periodic solution in o = 2. Without loss of generality,
we can change the scale of z to make r = 1. Since the angular momentum is zero, the dynamical
variables are only the shape variables. The Lagrangian for dz = id7 is

L=K+U, (120)
“= (12”77) <1+(1—\/577)4(1—\/577)+(1+\/§7I;£(1+\/§’7)>' 122)

The equations of motion are
% = i"nﬁ (fli>2 —(1+ nﬁ)za%u, and 7 ¢ 7. (123)
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Let 7 = 0 be the time of the simultaneous “half collision”. Since, we take the path z =
tEuler + 97, 7 = —(n)* follows. Expanding n and 7 by T,

1 -1 .
=—@1+ar), i=—=1+a"7), RA>0. 124
7 \/3( ) 1] \/g( ) (124)
Substitute this expansion to K, U, using (1 + nn) ~ 2/3 + ..., the main term is
_9 a)\ CL*)\* . 3 .
Kn~— 7'/\_1) <—7‘)‘ _1> = Zaa* AN AT 2 125
4 (\/3 V3 4 (125)
and , ) ,
e NP b
U~y ( o a ) : (126)

Therefore, to get £ = K —U = 0 namely to get £ ~ U in the main term, A+ A" —2 = -\ = —\*.
Namely A = A* =2/3 and

3 4 2 a+a*
“aaf x — = —Z= . 12
2997 % g 3 X oo (127)
Thus, we have
(aa*)? = —2(a +a*). (128)

The equation of motion for n and 7 in the series (124) with A = A\* = 2/3 yields

9 % *\2
B <a a* + 4> 43 O(t72/3) -0, (a(a)—i—él) 43 4 O(t*2/3) =0. (129)

2v/3a2 2v/3(a*)?
Therefore, a’a* = a(a*)? = —4. This equation has only one solution a = a* = —22/3. Since this
solution satisfies (127), this solution has zero energy. Thus, the only one solution is given by
(119).
A comment: If a and a* are free parameters a = a* = —22/3w, w3 = 1 are solutions.

6.2.1 A simple solution

For the next order,

1
n(t) = 7\/3 (1 —22/372/3 4 b7'4/3) + O(t2),
(130)
1
n(r) = ——\/g (1 —22/372/3 4 b*7'4/3) + O(t%),

the equation of demand only b = b*. The total energy £ = 0 demands b = —3 x 272/3. Then,
for the higher order terms, the equations of motion determine the coefficients,

n(r) = —n(1) = % (1 —22/372/3 _ 22%7'4/3 — 2—;72 BT 83 4 O(tw/?’)) . (131)
Once we assume 1 = —7}, the Lagrangian is simply
(8
(1—n2)* \dr (132)

B 1—n? 8
= (7))
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Then, £ = K —U =0 yields

dn\* _3(1-n**B—1?)
(&) =3 T ™ (3

So, this case is integrable.

Again, I would like to stress that although this is a solution of the equations of motion for
o = 2 with total energy zero, constant moment of inertia and vanishing angular momentum, this
is not the behavior of the figure-eight solution on the line z = t gyler + 7.

Note that the series replacing 72/3 — 72/3w, w® = 1 is also a solution of the equation of

motion and the total energy zero. This means that if we forget about the condition 7 = —(n)*,
and if we put the condition n = —7, the solution is a solution of (133) and the series
sy L 2/3_2/3 3 a3 2 37 5 3 5 8/3, 4 10/3
77(’7—)77(’7—)\/3<12 T (JJ*WT W*ﬁ’f&)*m’r W+O(t ) .
(134)

is a solution.
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