
The modularity of Siegel’s zeta

functions

Kazunari Sugiyama（杉山和成）

January 25, 2023

RIMS conference “Analytic and arithmetic aspects of automorphic

representations”

1/57



History and Motivation



Riemann’s zeta function (1859)

Figure 1:

B. Riemann

(1826-1866)

In 1859, Riemann proved that the function

ζ(s) =
∞∑
n=1

1

ns
,

initially defined in the region ℜ(s) > 1,

has a meromorphic continuation

to C, and satisfies the functional equation

ξ(s) := π− s
2Γ

(
s

2

)
ζ(s) = ξ(1 − s).
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Epstein’s zeta functions (1903, 1907)

Figure 2:

P. Epstein

(1871-1939)

Let P be a positive

definite symmetric matrix of degree

m. Epstein defined the zeta function

ζP (s) =
∑

a∈Zm\{0}

1

P [a]s
(P [a] = taPa),

initially defined in the region ℜ(s) > m
2
.

It has a memorphic continuation

to C, and satisfies the functional equation

ξP−1

(
m

2
− s

)
= (detP )1/2ξP (s),

where ξP (s) = π−sΓ(s)ζP (s).
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Hamburger’s converse theorem (1921)

H. Hamburger (1889-1956) proved the following theorem ∗:

Let h(s) =
∞∑
n=1

ann
−s and g(s) =

∞∑
n=1

bnn
−s be

absolutely convergent for ℜ(s) > 1, and suppose that both

(s− 1)h(s) and (s− 1)g(s) are entire functions of finite

order. Assume further that the functional equation

π− s
2Γ

(
s

2

)
h(s) = π−1−s

2 Γ

(
1 − s

2

)
g(1 − s)

holds. Then, in fact, h(s) = g(s) = a1ζ(s).

∗Acutually Hamburger proved a more general statement.
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Hecke’s converse theorem (1936)

Figure 3:

E. Hecke

(1887-1947)

Hecke greatly generalized Hamburger’s

theorem. Let λ > 0, k > 0, C = ±1.

Denote by M(λ, k, C)

be the space of holomorphic functions

f(z) on the upper half plane H satisfying

• f(z + λ) = f(z),

• f(−1
z
) = C(z

i
)kf(z), and

• f(z) =
∑∞
n=0 ane

2πinz
λ .
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Hecke’s converse theorem (1936)

For a given complex sequence {an}n≥0 of polynomial growth,

we set

ϕ(s) =
∞∑
n=1

an

ns
, Φ(s) =

(
2π

λ

)−s

Γ(s)ϕ(s).

Hecke proved that the following two conditions are equivalent:

(A) Φ(s) +
a0

s
+

Ca0

k − s
is EBV and satisfies the functional

equation Φ(s) = CΦ(k − s).

(B) f(z) =
∑∞
n=0 ane

2πinz
λ ∈ M(λ, k, C).
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The modularity of Epstein’s zeta functions

For a positive P of degree m and z ∈ H, set

θP (z) =
∑

a∈Zm\{0}

exp(πiP [a] · z).

We have

ξP (s) =

∫ ∞

1

(θP (iy) − 1)ys
dy

y
−

1

s

+ (detP )−1/2

{∫ ∞

1

(θP−1(iy) − 1)y
m
2
−sdy

y
−

1
m
2
− s

}
,

from which we obtain the functional equation of ξP (s).
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The modularity of Epstein’s zeta functions

Assume further that P is even integral with detP = 1. (In

this case, m is a multiple of 8.) Then,

θP

(
−

1

z

)
= zm/2θP (z), θP (z + 1) = θP (z),

i.e., θP (z) is a modular form of m/2. Moreover,

θP (z) =
∞∑
l=0

rP (2l) exp(2πilz),

where rP (2l) is the representation number defined by

rP (2l) = ♯{a ∈ Zm ; P [a] = 2l}.
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Siegel’s zeta functions (1938, 1939)

Figure 4:

C.L. Siegel

(1896-1981)

Let Y be a non-degenerate half-integral

symmetric matrix of degree m, and

put V± = {v ∈ Rm ; sgnY [v] = ±}.
Then Siegel’s zeta functions are defined by

ζ±(s) =
∑

v∈SO(Y )Z\(Zm∩V±)

µ(v)

|Y [v]|s
,

where µ(v) is a

certain volume of SO(Y )v,R/SO(Y )v,Z.
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Siegel’s comment on the modularity

Siegel proved the analytic properties such as the functional

equation, and made the following remark in a 1938 paper:

Will man die Transformationstheorie von f(S, x) für

beliebige Modulsubstitutionen entwickeln, so hat man

außer ζ1(S, s) auch analog gebildete Zetafunktionen mit

Restklassen-Chrakteren zu untersuchen. Die zum Be-

weise der Sätze 1,2,3 führenden Überlegungen lassen sich

ohne wesentiche Schwierigkeit auf den allgemeinen Fall

übertragen. Vermöge der Mellinschen Transformation

erhält man dann das wichtige Resultat, daß die durch (53)

definierte Funktion f(S, x) eine Modulform der Dimen-

sion n
2

und der Stufe 2D ist; dabei wird vorausgesetzt,

daß n ungerade und x′Sx keine ternäre Nullform ist. 10/57



Translation of Siegel’s comment

A translation (with DeepL) is as follows:

If one wants to develop the transformation theory of

f(S, x) for arbitrary modular substitutions, then in ad-

dition to ζ1(S, s) one also has to investigate zeta func-

tions formed analogously with residual class characters.

The considerations leading to the proof of Theorems 1,

2, 3 can be transferred to the general case without any

major difficulty. By virtue of the (inverse) Mellin trans-

formation, one then obtains an important result that the

function f(S, x) defined by (53) is a modular form of

weight n
2
and level 2D, provided that n is odd and x′Sx

is not a ternary zero form.
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The aim of this talk

The aim of this talk is

• to accompolish Siegel’s original plan by using a

Weil-type converse theorem for Maass forms, which

has appeared recently.

• to show that ”half” of Siegel’s zeta functions

correspond to holomorphic modular forms.
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ジーゲルについての本

Recently, Prof. Kenji Ueno (上野健爾) wrote two books (in

japanese) on Siegel, both on his life and his mathematics.
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Maass’ converse theorem (1949)

Figure 5:

H. Maaß(1911-

1992)

Maaß introduced the

notion of non-holomorphic modular forms

(Maass forms). He proved a converse

theorem for Maass forms, and applied

it to Siegel’s zeta functions. It was shown

that in a very special case (when Y is

diagonal of even degree with detY = 1),

Siegel’s zeta functions can be

expressed as the product of two standard

Dirichlet series such as ζ(s) and L(s, χ).
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Siegelsche HauptSatz (1951)

In terms of Siegel’s zeta functions ζ±(s), Siegel’s main

theorem states that the coefficients

M(Y ;±n) =
∑

v∈SO(Y )Z\(Zm∩V±)
Y [v]=±n

µ(v) (n = 1, 2, 3, . . . )

can be expressed as the product of local representation

densities over all primes. Siegel called M(Y ;n) the measures

of representations (Darstellungsmaß). In the course of the

proof of the main theorem, it is shown that the measures

M(Y ;n) appear as Fourier coefficients of some real analytic

automorphic form, which is an integral of indefinite theta

series.
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Ibukiyama’s explicit formula

In his book 『保型形式特論』 (Topics on

modular forms), T. Ibukiyama proved that

whenm is even, Siegel’s zeta functions can

be expressed as a Q-linear combinations of

asL(s, χ1)L

(
s−

m

2
+ 1, χ2

)
,

where a is a positive rational number,

and χ1, χ2 are real Dirichlet characters.

In the proof, Siegel’s main theorem is used.
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A Weil-type converse theorem

for Maass forms



Weil’s converse theorem (1967)

Figure 6: A. Weil

(1906-1998)

Weil characterized modular forms for the

congruence subgroup Γ0(N) by twisting

the series ϕ(s) by Dirichlet characters. In

Weil’s converse theorem, for each primitive

character ψ, the analytic properties of

Λ(s, ψ) = (2π)−sΓ(s)
∑
n=1

ψ(n)an

ns

are assumed.
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Modular forms of half integral weight (1973)

Figure 7:

G. Shimura

(1930-2019)

In a 1973 paper, which appeared in Annals

of Math., Shimura studied modular forms

of half integral weight. In the last section

of the paper, he mentioned that as in

Weil’s paper, one can characterize modular

forms of half-integral weight by analytic

properties of twisted L-functions. Shimura

wrote ”we do not give here an explicit

statement, which is rather obvious”.
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The purpose of this section

In this section, we define Maass forms of integral and

half-integral weight, and recall a Weil-type converse theorem

that is proved in

T. Miyazaki, F. Sato, T. Ueno and S., Converse the-

orems for automorphic distributions and Maass forms

of level N , Res. number theory 6:6 (2020).



Definition of Maass forms

Let Γ = SL2(Z) be the modular group, and for a positive

integer N , we denote by Γ0(N) the congruence subgroup.

As usual, Γ acts on H by the linear fractional transformation.

We put j(γ, z) = cz + d, and define θ(z) and J(γ, z) by

θ(z) =
∞∑

n=−∞

exp(2πin2z), J(γ, z) =
θ(γz)

θ(z)
.

Then it is well-known that

J(γ, z) = ε−1
d ·
(
c

d

)
·(cz+d)1/2 for γ =

(
a b

c d

)
∈ Γ0(4),

where

εd =

1 (d ≡ 1 (mod 4)),

i (d ≡ 3 (mod 4)).
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Definition of Maass forms

For an integer ℓ, the hyperbolic Laplacian ∆ℓ/2 of weight ℓ/2

on H = {z = x+ iy ∈ C ; y > 0} is defined by

∆ℓ/2 = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+
iℓy

2

(
∂

∂x
+ i

∂

∂y

)
Let χ be a Dirichlet character mod N . Then we use the same

symbol χ to denote the character of Γ0(N) defined by

χ(γ) = χ(d) for γ =

(
a b

c d

)
∈ Γ0(N).
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Definition of Maass forms

Definition 1

Let ℓ ∈ Z, and N be a positive integer, with 4|N when ℓ is

odd. A complex-valued C∞-function F (z) on H is called a

Maass form for Γ0(N) of weight ℓ/2 with character χ, if

the following three conditions are satisfied;

1. for every γ ∈ Γ0(N),

F (γz) =

χ(γ)j(γ, z)
ℓ/2 · F (z) (ℓ is even)

χ(γ)J(γ, z)ℓ · F (z) (ℓ is odd)
,

2. ∆ℓ/2F = Λ · F with some Λ ∈ C,
3. F is of moderate growth at every cusp.
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A Weil-type converse theorem

Let λ be a complex number with λ ̸∈ 1 − 1
2
Z≥0. Let

α = {α(n)}n∈Z\{0} and β = {β(n)}n∈Z\{0} be complex

sequences of polynomial growth. For α, β, we can define the

L-functions ξ±(α; s), ξ±(β; s) and the completed

L-functions Ξ±(α; s),Ξ±(β; s) by

ξ±(α; s) =
∞∑
n=1

α(±n)
ns

, Ξ±(α; s) = (2π)−sΓ(s)ξ±(α; s),

ξ±(β; s) =
∞∑
n=1

β(±n)
ns

, Ξ±(β; s) = (2π)−sΓ(s)ξ±(β; s).
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A Weil-type converse theorem

Now we assume the following conditions [A1] – [A4]:

[A1] ξ±(α; s), ξ±(β; s) have meromorphic continuations to

the whole s-plane, and (s− 1)(s− 2 + 2λ)ξ±(α; s)

and (s− 1)(s− 2 + 2λ)ξ±(β; s) are entire functions,

which are of finite order in any vertical strip.

[A2] The residues of ξ±(α; s) and ξ±(β; s) at s = 1 satisfy

Res
s=1

ξ+(α; s) = Res
s=1

ξ−(α; s),

Res
s=1

ξ+(β; s) = Res
s=1

ξ−(β; s).
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A Weil-type converse theorem

[A3] The following functional equation holds:

γ(s)

(
Ξ+(α; s)

Ξ−(α; s)

)

= N2−2λ−s · Σ(ℓ) · γ(2 − 2λ− s)

(
Ξ+(β; 2 − 2λ− s)

Ξ−(β; 2 − 2λ− s)

)
,

where γ(s) and Σ(ℓ) are defined by

γ(s) =

(
eπsi/2 e−πsi/2

e−πsi/2 eπsi/2

)
, Σ(ℓ) =

(
0 iℓ

1 0

)
.
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A Weil-type converse theorem

[A4] If λ = q
2
(q ∈ Z≥0, q ≥ 4), then

ξ+(α;−k)+(−1)kξ−(α;−k) = 0 (k = 1, 2, . . . , q−3).

Under the assumptions [A1] – [A4], we define α(0), β(0),

α(∞), β(∞) by

α(0) = −ξe(α; 0)

α(∞) =
N

2
Res
s=1

ξe(β; s),

β(0) = −ξe(β; 0)

β(∞) =
i−ℓ

2
Res
s=1

ξe(α; s),

where ξe(∗; s) = ξ+(∗; s) + ξ−(∗; s). (∗ = α or β.)
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A Weil-type converse theorem

For an odd prime number r with (N, r) = 1 and a Dirichlet

character ψ mod r, the twisted L-functions

ξ±(α,ψ; s),Ξ±(α,ψ; s) are defined by

ξ±(α,ψ; s) =
∞∑
n=1

α(±n)τψ(±n)
ns

,

Ξ±(α,ψ; s) = (2π)−sΓ(s)ξ±(α,ψ; s),

where τψ(n) is the Gauss sum defined by

τψ(n) =
∑

m mod r
(m,r)=1

ψ(m)e2πimn/r.

ξ±(β, ψ; s),Ξ±(β, ψ; s) are defined similarly.
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A Weil-type converse theorem

Let PN be a set of odd prime numbers not dividing N . For an

r ∈ PN , denote by Xr the set of all Dirichlet characters mod

r (including the principal character ψr,0). For ψ ∈ Xr, we

define the Dirichlet character ψ∗ by

ψ∗(k) = ψ(k)

(
k

r

)ℓ
.

We put

Cℓ,r =

1 (ℓ is even),

εℓr (ℓ is odd).
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A Weil-type converse theorem

In the following, we fix a Dirichlet character χ mod N that

satisfies χ(−1) = iℓ (resp. χ(−1) = 1) when ℓ is even

(resp. odd).

For an r ∈ PN and a ψ ∈ Xr, we assume some conditions

on ξ±(α,ψ; s) and ξ±(β, ψ
∗; s) such as

γ(s)

(
Ξ+(α,ψ; s)

Ξ−(α,ψ; s)

)
= χ(r) · Cℓ,r · ψ∗(−N) · r2λ−2 · (Nr2)2−2λ−s

· Σ(ℓ) · γ(2 − 2λ− s)

(
Ξ+ (β, ψ∗; 2 − 2λ− s)

Ξ− (β, ψ∗; 2 − 2λ− s)

)
.
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A Weil-type converse theorem

Define the function Fα(z) on H by

Fα(z) = α(∞) · yλ−ℓ/4

+ α(0) · i−ℓ/2 ·
(2π)21−2λΓ(2λ− 1)

Γ
(
λ+ ℓ

4

)
Γ
(
λ− ℓ

4

) · y1−λ−ℓ/4

+

∞∑
n=−∞
n ̸=0

α(n) ·
i−ℓ/2 · πλ · |n|λ−1

Γ
(
λ+ sgn(n)ℓ

4

) · Wℓ,n,λ(y) · e[nx],

where Wℓ,n,λ(y) = y−ℓ/4W sgn(n)ℓ
4

,λ−1
2
(4π|n|y). We

define Gβ(z) from β similarly.

29/57



A Weil-type converse theorem

Lemma 1 (Converse Theorem)

Then Fα(z) (resp. Gβ(z)) gives a Maass form for Γ0(N)

of weight ℓ
2
with character χ (resp. χN,ℓ), and eigenvalue

(λ− ℓ/4)(1 − λ− ℓ/4), where

χN,ℓ(d) = χ(d)

(
N

d

)ℓ
.

Moreover, we have

Fα

(
−

1

Nz

)
(
√
Nz)−ℓ/2 = Gβ(z).
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Analytic properties of Siegel’s

zeta functions



Prehomogeneous vector spaces

Siegel’s calculation can be well understood in the framework of

the thery of prehomogeneous vector spaces, which is

developed by M. Sato and Shintani.

Figure 8: Mikio Sato (佐藤幹夫, 1928-2023) and Takuro Shintani

(新谷卓郎, 1943-1980)



Prehomogeneous vector spaces

We assume that m ≥ 5. Let Y be a non-degenerate

half-integral symmetric matrix of degree m, and let p be the

number of positive eigenvalues of Y . Put

SO(Y ) = {g ∈ SLm(C) | tgY g = Y }. We define the

representation ρ of G = GL1(C)×SO(Y ) on V = Cm by

ρ(g̃)v = ρ(t, g)v = tgv (g̃ = (t, g) ∈ G, v ∈ V ).

Let P (v) be the quadratic form on V defined by

P (v) = Y [v] = tvY v. Then V − S is a single ρ(G)-orbit,

where S = {v ∈ V |P (v) = 0}. That is, (G, ρ, V ) is a

(regular) prehomogeneous vector space.
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Prehomogeneous vector spaces

We identify the dual space V ∗ of V with V itself via the

inner product ⟨v, v∗⟩ = tvv∗. Then the dual triplt

(G, ρ∗, V ∗) is given by

ρ∗(g̃)v∗ = ρ∗(t, g)v∗ = t−1 · tg−1v∗.

We define the quadratic form P ∗(v∗) on V ∗ by

P ∗(v∗) = 1
4
Y −1[v∗] = 1

4
· tv∗ Y −1v∗. Then, V − S∗ is a

single ρ∗(G)-oribit, where S∗ is the zero set of P ∗.
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Local zeta functions

For ϵ, η = ±, we put

Vϵ = {v ∈ VR | sgnP (v) = ϵ},
V ∗
η = {v∗ ∈ VR | sgnP ∗(v∗) = η}.

Denote by S(VR) the space of rapidly decreasing functions on

VR. For f, f
∗ ∈ S(VR) and ϵ, η = ±, we put

Φϵ(f ; s) =

∫
Vϵ

f(v)|P (v)|s−m
2 dv,

Φ∗
η(f

∗; s) =

∫
V ∗
η

f∗(v∗)|P ∗(v∗)|s−m
2 dv∗.

We define the Fourier transform f̂(v∗) of f ∈ S(VR) by

f̂(v∗) =

∫
VR

f(v)e[⟨v, v∗⟩]dv.
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Local Functional Equation

Lemma 2

Let p be the number of positive eigenvalues of Y , and put

D = det(2Y ). Then we have(
Φ∗

+(f̂ ; s)

Φ∗
−(f̂ ; s)

)

= Γ

(
s+ 1 −

m

2

)
Γ(s)|D|12 · 2−2s+m

2 · π−2s+m
2
−1

×
(
sinπ

(
p
2
− s

)
sin πp

2

sin π(m−p)
2

sinπ
(
m−p

2
− s

))(Φ+

(
f ; m

2
− s

)
Φ−

(
f ; m

2
− s

)) .
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Normalizations of measures

Let dx (resp. dλ) be the measure on GLm(R) (resp.

Symm(R)) defined by

dx = | detx|−m
∏

1≤i,j≤m

dxij,

dλ = | detλ|−
m+1

2

∏
1≤i≤j≤m

dλij.

We normalize a Haar measure d1g on the Lie group SO(Y )R
in such a way that for all F (x) ∈ L1(GLm(R)),∫

GLm(R)
F (x)dx

=

∫
SO(Y )R\GLm(R)

dλ(tẋY ẋ)

∫
SO(Y )R

F (gẋ)d1g.
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Normalizations of measures

Let

SO(Y )v = {g ∈ SO(Y ) | gv = v}

be the isotropy subgroup at v ∈ V − S, which is reductive.

For v ∈ Vϵ, there exists a Haar measure dµv on SO(Y )v,R
such for all H(t, g) ∈ L1(GR),∫ ∞

0

d×t

∫
SO(Y )R

H(t, g)d1g

=

∫ ∞

0

∫
SO(Y )R/SO(Y )v,R

|P (ρ(t, ġ)v)|−m
2 d(ρ(t, ġ)v)

×
∫
SO(Y )v,R

H(t, ġh)dµv(h).

36/57



Definition of the density µ(v)

For v ∈ VQ − SQ, we put

µ(v) =

∫
SO(Y )v,R/SOv,Z

dµv(h).

Since it is assumed thatm ≥ 5, the generic isotropy subgroup

SO(Y )v is a semisimple algebraic group, and thus we have

µ(v) < +∞ by a theorem of Borel and Harish-Chandra.
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Schwartz-Bruhat functions on VQ

We call a function ϕ : VQ → C a Schwartz-Bruhat function if

1. there exists a positive integer M such that ϕ(v) = 0 for

v ̸∈ 1
M
VZ, and

2. there exists a positive integer N such that if v,w ∈ VQ

satisfy v − w ∈ NVZ. then ϕ(v) = ϕ(w).

The totallity of Schwartz-functions on VQ is denoted by

S(VQ).
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Poisson summation formula

We define the Fourier transform ϕ̂ ∈ S(VQ) by

ϕ̂(v∗) =
1

[VZ : rVZ]

∑
v∈VQ/rVZ

ϕ(v)e[−⟨v, v∗⟩],

where r is a sufficiently large positive integer such that the

value ϕ(v)e[−⟨v, v∗⟩] depends only on the residue class

v mod rVZ.

Lemma 3 (Poisson summation formula)

For ϕ ∈ S(VQ) and f ∈ S(VR),∑
v∗∈VQ

ϕ̂(v∗)f̂(v∗) =
∑
v∈VQ

ϕ(v)f(v).
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Siegel’s zeta functions

Definition 4 (Siegel’s zeta functions)

Let ϵ, η = ±. For ϕ, ϕ∗ ∈ S(VQ), we define Siegel’s zeta

functions ζϵ(ϕ; s) and ζ∗η(ϕ
∗; s) by

ζϵ(ϕ; s) =
∑

v∈SO(Y )Z\Vϵ∩VQ

ϕ(v)µ(v)

|P (v)|s
,

ζ∗η(ϕ
∗; s) =

∑
v∗∈SO(Y )Z\V ∗

η ∩VQ

ϕ∗(v∗)µ∗(v∗)

|P ∗(v∗)|s
.

These zeta functions converge absolutely for ℜ(s) > m/2.
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Zeta integrals

For ϕ, ϕ∗ ∈ S(VQ) and f, f∗ ∈ S(VR), we define the zeta

integrals by

Z(f, ϕ; s)

=

∫ ∞

0

t2sd×t

∫
SO(Y )R/SO(Y )Z

∑
v∈VQ−SQ

ϕ(v)f(ρ(t, g)v)d1g,

Z∗(f∗, ϕ; s)

=

∫ ∞

0

t−2sd×t

×
∫
SO(Y )R/SO(Y )Z

∑
v∗∈VQ−S∗

Q

ϕ∗(v∗)f∗(ρ∗(t, g)v∗)d1g.
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Integral representatons of Siegel’s zeta functions

Lemma 5 (Integral representations of the zeta

functions)

Assume that ϕ, ϕ∗ ∈ S(VQ) are SO(Y )Z-invariant. For

ℜ(s) > m
2
, we have

Z(f, ϕ; s) =
∑
ϵ=±

ζϵ(ϕ; s)Φϵ(f ; s),

Z∗(f∗, ϕ∗; s) =
∑
η=±

ζ∗η(ϕ
∗; s)Φ∗

η(f
∗; s).

42/57



Analytic continuations of Siegel’s zeta functions

In the following, we assume that ϕ ∈ S(VQ) is

SO(Y )Z-invariant.

Theorem 6

The zeta functions ζϵ(ϕ; s) and ζ∗η(ϕ̂; s) have analytic

continuations of s in C, and the zeta functions multiplied by

(s− 1)(s− m
2
) are entire functions of s of finite order in

any vertical strip.
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The functional equation of Siegel’s zeta functions

Theorem 7

The zeta functions ζϵ(ϕ; s) and ζ∗η(ϕ̂; s) satisfy the

following functional equation:(
ζ+
(
ϕ; m

2
− s

)
ζ−
(
ϕ; m

2
− s

))

= Γ

(
s+ 1 −

m

2

)
Γ(s)|D|12 · 2−2s+m

2 · π−2s+m
2
−1

×
(
sinπ

(
p
2
− s

)
sin π(m−p)

2

sin πp
2

sinπ
(
m−p

2
− s

))(ζ∗+(ϕ̂; s)
ζ∗−(ϕ̂; s)

)
.
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Residues

Lemma 8

We have

Res
s=m

2

ζϵ(ϕ; s) = ϕ̂(0)

∫
SO(Y )R/SO(Y )Z

d1g,

Res
s=m

2

ζ∗η(ϕ̂; s) = ϕ(0)

∫
SO(Y )R/SO(Y )Z

d1g.

We also have some formulas for Res
s=1

ζϵ(ϕ; s) and

Res
s=1

ζ∗η(ϕ̂; s).
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Main results



Level

Let D = det(2Y ) and N be the level of 2Y . That is, N is

the smallest positive integer such that N(2Y )−1 is even

integral. We define a half-integral symmetric matrix Ŷ by

Ŷ =
1

4
NY −1.

We define the quadratic form P (v) on V by

P (v) = Y [v] = tvY v, and the quadratic form P̂ (v∗) on

V ∗ by

P̂ (v∗) = Ŷ [v∗].

46/57



Character

We define a field K by

K =

Q(
√

(−1)m/2D) (m ≡ 0 (mod 2))

Q(
√

2|D|) (m ≡ 1 (mod 2))
,

and χK be the Kronecker symbol associated to K.
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Specializing ϕ

For an odd prime r with (r,N) = 1 and a Dirichlet character

ψ of modulus r, we define the function ϕψ,P (v) on VQ by

ϕψ,P (v) = τψ(P (v)) · chZm(v),

where τψ(P (v)) is the Gauss sum. We have

ζε(ϕψ,P (v); s) =
∑

v∈SO(Y )Z\Vε∩VZ

τψ(P (v))µ(v)

|P (v)|s
.
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Fourier transform of ϕψ,P

Lemma 9 (Stark)

Let ϕ̂ψ,P (v
∗) be the Fourier transform of ϕψ,P . Then the

support of ϕ̂ψ,P (v
∗) is contained in r−1Zm, and for

v∗ ∈ Zm, we have

ϕ̂ψ,P (r
−1v∗)

= r−m/2χK(r) · C2p−m,r · ψ∗(−N) · τψ∗(P̂ (v∗)),

where ψ∗(k) = ψ(k)
(
k
r

)m
and

C2p−m,r =

1 (m ≡ 0 (mod 2))

ε2p−mr (m ≡ 1 (mod 2))
.
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Measures of representations (Darstellungsmaß)

Definition 10 (Siegel)

For n ∈ Z \ {0}, we put

M(P ;n) =
∑

v∈SO(Y )Z\V±∩VZ
P (v)=n

µ(v),

M∗(P̂ ;n) =
∑

v∗∈SO(Y )Z\V ∗
±∩VZ

P̂ (v∗)=n

µ∗(v∗).

We call M(P ;n) (resp. M∗(P̂ ;n)) the measures of

representation (Darstellungsmaß) of n by P (resp. P̂ ).

The sums in the definition are finite sums by a theorem of

Borel and Harish-Chandra. 50/57



Volumes σ(ai) on the singular set

Let S1,R = {v ∈ VR |P (v) = 0, v ̸= 0}. For v ∈ S1,R, we

can define a volume σ(v) of SO(Y )v,R/SO(Y )v,Z in a

certain way. In general, SO(Y )Z\S1,Z is not a finite set,

while

{v ∈ SO(Y )Z\S1,Z ; v is primitive}

is a finite set. Let a1, . . . , ah be a complete system of

representatives of this set, and we get volumes

σ(ai) (i = 1, · · · , h).
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Main Theorem

Assume that at least one ofm or p is an odd integer. Take an
integer ℓ with ℓ ≡ 2p−m (mod 4). Define C∞-functions
F (z) on H by

F (z) = y(m−ℓ)/4 ·
∫
SO(Y )R/SO(Y )Z

d1g

+ (−1)(2p−m−ℓ)/4ζ(m− 2)

·
h∑

i=1

σ(ai)

|D| 1
2

×
(2π)21−m

2 Γ(m
2

− 1)

Γ
(

m+ℓ
4

)
Γ
(

m−ℓ
4

) · y1−(m+ℓ)/4

+

∞∑
n=−∞
n ̸=0

(−1)(2p−m−ℓ)/4 ·
M(P ;n)

|D| 1
2

π
m
4 · |n|−m

4

Γ
(

m+sgn(n)ℓ
4

)
× y− ℓ

4W sgn(n)ℓ
4 ,m4 − 1

2
(4π|n|y)e[nx].
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Main Theorem

Theorem 11

F (z) is a Maass form for Γ0(N) of weight ℓ/2 with

eigenvalue (m− ℓ)(4 −m− ℓ)/16 and character χK .

We have a similar result for G(z) that can be constructed

from M∗(P̂ ;n), and we have

F

(
−

1

Nz

)
(
√
Nz)−ℓ/2 = G(z).
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Lower (Upper) triangular case

Assume that the number of negative eigenvalues of Y is even;

that is, m− p is an even integer. Then the first row of the

functional equation is of the following form:

ζ+

(
ϕ;
m

2
− s

)
= Γ

(
s+ 1 −

m

2

)
Γ(s)|D|12 · 2−2s+m

2 · π−2s+m
2
−1

× sinπ

(
p

2
− s

)
ζ∗+(ϕ̂; s).

This suggests that ζ+(ϕ; s) and ζ∗+(ϕ; s) satisfy the

functional equation of Hecke type.

(When p is even, we consider the second row.)
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Holomorphic modular forms

Assume that m− p is even. We define holomorphic functions

F (z) and G(z) on H by

F (z) = (−1)
m−p

2 (2π)−
m
2 · Γ

(
m

2

)∫
SO(Y )R/SO(Y )Z

d1g

+ |D|−1/2 ·
∞∑
n=1

M(P ;n)e[nz],

G(z) = i−
m
2 · (2π)−

m
2 · Γ

(
m

2

)
N

m
4 |D|−1/2

∫
SO(Y )R/SO(Y )Z

d1g

+ (−1)
m−2p

4 ·N
m
4 ·

∞∑
n=1

M∗(P̂ ;n)e[nz].
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Holomorphic modular forms

Theorem 12

Then, F (z) and G(z) are holomorphic modular forms for

Γ0(N) of weight m/2. Further we have

F

(
−

1

Nz

)
(
√
Nz)−m/2 = G(z).

This result is consistent with a result of Siegel in 1948, in

which Siegel calculated the action of certain differential

operators on indefinite theta series, and proved that in the

case of detY > 0, we can construct holomorphic modular

forms from indefinite theta series associated with Y .
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Thank you very much!
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