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History and Motivation



Riemann’s zeta function (1859)

In 1859, Riemann proved that the function

=1
C(S) = Z;a

initially defined in the region R(s) > 1,
has a meromorphic continuation

to C, and satisfies the functional equation
Figure 1:

B. Riemann £(s) := w2l (g) ¢(s) =&(1 — s).
(1826-1866)
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Epstein’s zeta functions (1903, 1907)

Let P be a positive
definite symmetric matrix of degree
m. Epstein defined the zeta function

Cr(s) = )

acZ™\{0}

prapp (Plal ='aPa),

initially defined in the region R(s) > 2.
It has a memorphic continuation
Figure 2: to C, and satisfies the functional equation

L (50 e
where £p(s) = w°T'(s)Cp(s).
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Hamburger’s converse theorem (1921)

H. Hamburger (1889-1956) proved the following theorem *

Let h(s) = Z a,n"° and g(s) = Z b,n"*

absolutely convergent for R(s) > 1, and suppose that both
(s —1)h(s) and (s — 1)g(s) are entire functions of finite
order. Assume further that the functional equation

75T ( ) h(s) = =~ 2T (1 > S) g(1— 3)

holds. Then, in fact, h(s) = g(s) = a1{(s).

*Acutually Hamburger proved a more general statement.

4/57



Hecke's converse theorem (1936)

Hecke greatly generalized Hamburger's
theorem. Let A > 0,k > 0,C = =£1.
Denote by M (X, k, C)

be the space of holomorphic functions
f(z) on the upper half plane H satisfying

o f(z+A) = f(2),

o F(=1) = C(F(2), anc
Figure 3: o f(z)=>1o0, ane 3.
E. Hecke

(1887-1947)
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Hecke's converse theorem (1936)

For a given complex sequence {a, }»>o of polynomial growth,
we set

oo

60 =32 2 = (F) o).

n=1

Hecke proved that the following two conditions are equivalent:

Cay . - .
(A) ®(s) —|— — —|— is EBV and satisfies the functional
equation ‘I>(s) C<I>(k — s).

(B) f(2) = £, ane™= € M(\, k,C).
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The modularity of Epstein’s zeta functions

For a positive P of degree m and z € H, set
O0p(z) = Z exp(wiP[a] - z).
acz™\{0}
We have
> : Ay 1
ér(s) = [ (0rtin) — )y
1

S

2

0 o d 1
+ (det P)~1/2 / Crom(f) = o2l — ,
1 y o _s

from which we obtain the functional equation of £p(s).
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The modularity of Epstein’s zeta functions

Assume further that P is even integral with det P = 1. (In
this case, m is a multiple of 8.) Then,

6p (—2) = 2™20p(z), Op(z+1) = 0p(2),

i.e., Op(z) is a modular form of m /2. Moreover,

O0p(z) = Z rp(2l) exp(2milz),

=0

where 7p(21) is the representation number defined by

rp(2l) = #{a € Z™; P[a] = 2l}.
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Siegel’s zeta functions (1938, 1939)

Figure 4:
C.L. Siegel
(1896-1981)

Let Y be a non-degenerate half-integral
symmetric matrix of degree m, and

put Vi = {v € R™; sgnY[v] = £}
Then Siegel's zeta functions are defined by

w= 5 2 L2

9
veSO(Y)z\(Z™NVy) |Y[’U] |S

where p(v) is a
certain volume of SO(Y),z/SO(Y ),z
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Siegel’s comment on the modularity

Siegel proved the analytic properties such as the functional
equation, and made the following remark in a 1938 paper:

Will man die Transformationstheorie von f(&,x) fiir
beliebige Modulsubstitutionen entwickeln, so hat man
auBer ¢1(S, s) auch analog gebildete Zetafunktionen mit
Restklassen-Chrakteren zu untersuchen. Die zum Be-
weise der Satze 1,2,3 fiihrenden Uber/egungen lassen sich
ohne wesentiche Schwierigkeit auf den allgemeinen Fall
tibertragen. Vermoge der Mellinschen Transformation
erhalt man dann das wichtige Resultat, daB die durch (53)
definierte Funktion f (&, x) eine Modulform der Dimen-
sion 2 und der Stufe 2D ist; dabei wird vorausgesetzt,

2
daB n ungerade und ' Sy keine ternare Nullform ist. 10/57



Translation of Siegel’s comment

A translation (with Deepl) is as follows:

If one wants to develop the transformation theory of
f (S, x) for arbitrary modular substitutions, then in ad-
dition to ¢1(S, s) one also has to investigate zeta func-
tions formed analogously with residual class characters.
The considerations leading to the proof of Theorems 1,
2, 3 can be transferred to the general case without any
major difficulty. By virtue of the (inverse) Mellin trans-
formation, one then obtains an important result that the
function f(&,x) defined by (53) is a modular form of
weight % and level 2D, provided that n is odd and ¥’ Sy

is not a ternary zero form.
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The aim of this talk

The aim of this talk is

e to accompolish Siegel’s original plan by using a
Weil-type converse theorem for Maass forms, which
has appeared recently.

e to show that "half’ of Siegel’s zeta functions
correspond to holomorphic modular forms.
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Recently, Prof. Kenji Ueno (_-¥7{#f) wrote two books (in
japanese) on Siegel, both on his life and his mathematics.
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Maass’ converse theorem (1949)

MaaB introduced the

notion of non-holomorphic modular forms
(Maass forms). He proved a converse
theorem for Maass forms, and applied

it to Siegel's zeta functions. It was shown
that in a very special case (when Y is
diagonal of even degree with detY = 1),
Siegel's zeta functions can be

expressed as the product of two standard
Figure 5: Dirichlet series such as {(s) and L(s, x).

H. MaaB(1911-
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Siegelsche HauptSatz (1951)

In terms of Siegel's zeta functions {4 (s), Siegel's main
theorem states that the coefficients

M(Y;4n) = > pw)  (n=1,2,3,...)
vESO(Y)z\(Z™NV4)
Y[v]=%n
can be expressed as the product of local representation
densities over all primes. Siegel called M (Y ;1) the measures
of representations (DarstellungsmaB). In the course of the
proof of the main theorem, it is shown that the measures
M (Y ;n) appear as Fourier coefficients of some real analytic
automorphic form, which is an integral of indefinite theta
series.
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Ibukiyama’s explicit formula

In his book T{REEAKsGwI  (Topics on

me® modular forms), T. |bukiyama proved that
Wikim

ARG be expressed as a Q-linear combinations of

when m is even, Siegel's zeta functions can

ol s ¥ 3 m
a L(S’XI)L S — E +1,x2 |,

where a is a positive rational number,

and x1, X2 are real Dirichlet characters.
In the proof, Siegel's main theorem is used.
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A Weil-type converse theorem

for Maass forms




Weil’s converse theorem (1967)

Weil characterized modular forms for the
congruence subgroup T'g(IN) by twisting
the series ¢(s) by Dirichlet characters. In
Weil's converse theorem, for each primitive
character 1), the analytic properties of

(n)an

A(s, ) = (27)°I'(s) Z

Figure 6: A. Weil
(1906-1998) are assumed.

17/57



Modular forms of half integral weight (1973)

In a 1973 paper, which appeared in Annals
of Math., Shimura studied modular forms
of half integral weight. In the last section
of the paper, he mentioned that as in
Weil's paper, one can characterize modular
forms of half-integral weight by analytic
properties of twisted L-functions. Shimura

wrote "we do not give here an explicit
statement, which is rather obvious”.

Figure 7:
G. Shimura
(1930-2019)
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The purpose of this section

In this section, we define Maass forms of integral and
half-integral weight, and recall a Weil-type converse theorem
that is proved in

T. Miyazaki, F. Sato, T. Ueno and S., Converse the-
orems for automorphic distributions and Maass forms
of level N, Res. number theory 6:6 (2020).



Definition of Maass forms

Let I' = SL5(Z) be the modular group, and for a positive
integer IN, we denote by I'g(IN') the congruence subgroup.
As usual, T" acts on H by the linear fractional transformation.
We put j(7,2) = cz + d, and define 8(z) and J (v, z) by

0(z) = Z exp(2mwin®z), J(v,2) = 00(2/:))

n=—oo

Then it is well-known that
b
T 2) = e+ (§ ) (eatap? for = (“ d) € To(4),
c

where
1 (d=1 (mod4)),

T it (d=3 (mod 4)).
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Definition of Maass forms

For an integer £, the hyperbolic Laplacian Ag/5 of weight £/2
onH={z=x+1iy € C; y > 0} is defined by

Ao — 2(82+82)+i£y<8+,6)
(2= Y ox?  Oy? 2 \Ox Zay

Let x be a Dirichlet character mod IN. Then we use the same
symbol x to denote the character of I'g(IV) defined by

x(v) =x(d) for v= (Z’ 2) € T'o(N).
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Definition of Maass forms

Definition 1

Let £ € 7, and N be a positive integer, with 4|IN when £ is
odd. A complex-valued C*°-function F'(z) on H is called a
Maass form for T'o(IN') of weight £/2 with character x, if
the following three conditions are satisfied;

1. for every v € T'o(IN),
x(7)3 (v, 2)"% - F(z) (£ is even)
XM I (v, 2)t - F(z)  (€is odd)

2. AyspF = A - F with some A € C,

3. F' is of moderate growth at every cusp.

F(vz) =
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A Weil-type converse theorem

Let X be a complex number with A & 1 — 2Z>q. Let

a = {a(n)tnez\foy and B = {B(n)}nez\ (o} be complex
sequences of polynomial growth. For a, 3, we can define the
L-functions &4 (i 8),€+(8; s) and the completed
L-functions 24 (a5 8), 24 (85 s) by

=, a(xn)

br(ass) =) — v =) = (o iBElzderal
£+(Bis) = ﬂ(;l:sn), E+(Bss) = (2m)°T'(s)€+ (85 5)-
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A Weil-type converse theorem

Now we assume the following conditions [Al] — [A4]:

[A1] &+(a;8),&+(B;s) have meromorphic continuations to
the whole s-plane, and (s — 1)(s — 2 + 2A\)&4 (s 8)
and (s — 1)(s — 2 4 2X)&4(B; s) are entire functions,
which are of finite order in any vertical strip.

[A2] The residues of €4 (a3 8) and €4 (8; s) at s = 1 satisfy
Res&i(a;s) = Res{ (a; ),

Res 1 (8;s) = Res{_(B; 5)-
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A Weil-type converse theorem

[A3] The following functional equation holds:

+(as 9)
v(s) ( (e s) )
— N2-2X—s 2i(852 —2X—s)
=N .E(E).7(2_2A_S)(E_(I@,z_zA_S))’

[ [

where (s) and X(£) are defined by
eﬂ'si/2 e—ﬂ'si/Z 0 ¢
7(5) = (e—ﬂ'si/2 e7r.si/2 ? E(e) = 1 0 :
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A Weil-type converse theorem

[A4] If X =2 (q € Z>o, q > 4), then
£r(o; —k)+H(=1)"¢ (o —k) =0 (k=1,2,...,9-3).
Under the assumptions [A1] — [A4], we define a(0), 3(0),
a(00), B(c0) by
a(0) = J—Vﬁe(a; 0)
af(o) = — Rest.(B; ),
B(0) = —%(B; 0)

B() = —-Res(ass),
where £ (3 8) = &4(x; 8) + € (;5). (x = v or )
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A Weil-type converse theorem

For an odd prime number 7 with (IN,r) = 1 and a Dirichlet
character 9 mod r, the twisted L-functions

&1(ay 15 8), Ex (e, 15 8) are defined by

talonipe) = 3 2ENTWER)

Bt (o, 5 8) = (27) °T(s)éx (v, 5 8),

where 7,,(n) is the Gauss sum defined by

T(n) = Y wp(m)errimnr,

m mod r
(m,r)=1

nS

£+ (B,v;8), EL(8,1; s) are defined similarly.
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A Weil-type converse theorem

Let Pn be a set of odd prime numbers not dividing IN. For an
r € Py, denote by X, the set of all Dirichlet characters mod
r (including the principal character ,.¢). For ¢ € X, we
define the Dirichlet character * by

v =5 (%)

We put
1 Li
Cor — (€ is even),
et (£Lisodd).

27/57



A Weil-type converse theorem

In the following, we fix a Dirichlet character x mod IN that
satisfies x(—1) = ¢ (resp. x(—1) = 1) when £ is even
(resp. odd).
For an r € Pn and a ¢ € X,., we assume some conditions
on &1 (v, 15 8) and £1(B,*; s) such as
a, ;s
’)’(8) +( ” . )
_(a, 95 8)
— X(r) . Cﬁ,r . ¢*(—N) . ,,,2/\—2 . (NT2)2_2)‘_S
By (8,952 — 22 — s))
E_(B,¢"52—2X—3)

(1 [1]

-Z](E)-'y(2—2)\—s)<
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A Weil-type converse theorem

Define the function F,(z) on H by

F,(z) = a(oco) - y)‘_£/4
(2m)21=2AT(2X — 1) '

+a(0)-im2. 1-A—2/4
(0) - 4 F(A+§)r(>\_§)
= i=t2 . A AL
+ ngoo a(n) . - (}\ n W) . We’n,)\(y) . e[nx],
n#0

where Wy A (y) = y~#/4 ngnin)l’A_% (4m|n|y). We
define Gg(z) from 3 similarly.
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A Weil-type converse theorem

Lemma 1 (Converse Theorem)

Then Fy(z) (resp. Gg(z)) gives a Maass form for T'o(IN)
of weight % with character x (resp. xn,), and eigenvalue
(A—2£/4)(1 — X —£/4), where

____/N\*
xvald) = x(@ ()
Moreover, we have

F, (—Niz) (VN2z)™4? = Ga(2).
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Analytic properties of Siegel’s

zeta functions




Prehomogeneous vector spaces

Siegel’s calculation can be well understood in the framework of
the thery of prehomogeneous vector spaces, which is
developed by M. Sato and Shintani.

Jakaro Shintomd

Figure 8: Mikio Sato ({Ef###K, 1928-2023) and Takuro Shintani
(B =ER, 1943-1980)



Prehomogeneous vector spaces

We assume that m > 5. Let Y be a non-degenerate
half-integral symmetric matrix of degree m, and let p be the
number of positive eigenvalues of Y. Put

SO(Y) ={g € SL,,,(C) | 'gY g = Y}. We define the
representation p of G = GL1(C) X SO(Y) on V = C™ by

p(g)’v = p(t,g)v = tgv (g = (tag) € G,v € V)

Let P(v) be the quadratic form on V' defined by

P(v) = Y[v] =*wYwv. Then V — S is a single p(G)-orbit,
where S = {v € V| P(v) = 0}. Thatis, (G,p,V) is a
(regular) prehomogeneous vector space.
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Prehomogeneous vector spaces

We identify the dual space V* of V' with V itself via the
inner product (v, v*) = *vv*. Then the dual triplt
(G, p*, V*) is given by

p*(§)v* = p*(t,g)v* =t .- tg  v*.

We define the quadratic form P*(v*) on V* by
P*(v*) = 1Y Ho*] = 2 - tv* Y 'o*. Then, V — S*isa
single p*(G)-oribit, where S* is the zero set of P*.
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Local zeta functions

For e, = =4, we put
Ve ={v € V&| sgn P(v) = €},
Vr = {v" € Va| sgn P*(v") = n}.

Denote by S(Vk) the space of rapidly decreasing functions on
Vk. For f, f* € S(Vr) and €,m = =%, we put

B.(f;5) = /V £ ()| P(v)[*~% dv,
w55 = [ F@)IP @Ol o
We define the Fourier trar:,sform F(v*) of £ € 8(Va) by
foy= [ F(@)el(w,v)ldv.
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Local Functional Equation

Lemma 2

Let p be the number of positive eigenvalues of Y, and put
D = det(2Y). Then we have

(‘Pi(f;S))
®* (f;5)
- ( o %) T(s)| D[} - 272+ . g2+ F 1

sinﬂ'(g—s) sin %P L (f;%—s)
. sin "(";_p) sin (222 — s) D_(f;2 —s) '

2
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Normalizations of measures

Let dx (resp. d\) be the measure on GL,,(R) (resp.
Sym,,,(R)) defined by
dr = |detx|™™ H dx;j,
1<4,j<m

dA = |det |75 [ dry
1<i<i<m

We normalize a Haar measure d*g on the Lie group SO(Y )r
in such a way that for all F(z) € L*(GL,,(R)),

/ F(x)dx
GLm (R)

= d\(*zY ) F(gi)d'g.
SO(Y)r\GLm (R) SO(Y)z
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Normalizations of measures

Let
SO(Y), ={g € SO(Y) |gv = v}

be the isotropy subgroup at v € V' — S, which is reductive.
For v € V., there exists a Haar measure du,, on SO(Y ),
such for all H(t,g) € L*(Gg),

/ dxt/ H(t,g)d'g
0 SO(Y)x

_ / / |P(p(t, §)v)|~ % d(p(t, §)v)
0 SO(Y)r/SO(Y)w,r

< [ HEahdu(h).
SO(Y)w,r

36/57



Definition of the density p(v)

For v € Vp — Sg, we put

p(w) = / 5[
SO(Y)v,R/SOU,Z

Since it is assumed that m > 5, the generic isotropy subgroup
SO(Y), is a semisimple algebraic group, and thus we have
p(v) < +oo by a theorem of Borel and Harish-Chandra.
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Schwartz-Bruhat functions on Vj

We call a function ¢ : Vi — C a Schwartz-Bruhat function if

1. there exists a positive integer M such that ¢(v) = 0 for
v ¢ %VZ, and

2. there exists a positive integer IN such that if v, w € Vy
satisfy v — w € NV5. then ¢(v) = ¢(w).

The totallity of Schwartz-functions on Vj is denoted by
S(Vo).
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Poisson summation formula

We define the Fourier transform ¢ € S(Vy) by

o =— T p(v)el=(v,0")],

[VZ : TVZ] vEVR/rVi

where 7 is a sufficiently large positive integer such that the
value ¢(v)e[— (v, v*)] depends only on the residue class
v mod rV5.

Lemma 3 (Poisson summation formula)
For ¢ € S(Vp) and f € S(Wr),

S ) Fw) = Y (0)F ().

’U*EV@ ’UEV@
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Siegel’s zeta functions

Definition 4 (Siegel’s zeta functions)
Let €,m = %. For ¢, o* € S(Vy), we define Siegel’s zeta
functions C.(¢; s) and C;(cﬁ*; s) by

d(v)p(v)
Ce(938) = R
veSO(Yz)z:\va |P(v)]
G =y TR

v*€SO(Y)2\ViNVy | ()]

These zeta functions converge absolutely for R(s) > m/2.
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Zeta integrals

For ¢, ¢p* € S(Vp) and f, f* € S(Vk), we define the zeta

integrals by
Z(f, b5 )
=), t,g)v)d'g,
/0 /SO(Y)R/SO(Y)ZUEX%SQ¢(v)f(p( Q)U) g
Z*(f*9¢,8)
:/oot—2sd><t
0
() f* (0" (8, g)v")d g
| > SR (b g)v)d'

O(Y)r/SO(Y)z v EVo st
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Integral representatons of Siegel’s zeta functions

Lemma 5 (Integral representations of the zeta
functions)

Assume that ¢, ¢* € S(Vy) are SO(Y )z-invariant. For
R(s) > 7, we have

Z(f,d55) = > Ce(58)®e(f35),
e=+

ZE(f*,9%58) = > Cu(d™58)®5 ("5 5)-
n==%
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Analytic continuations of Siegel’'s zeta functions

In the following, we assume that ¢ € S(Vp) is
SO(Y )z-invariant.

Theorem 6

The zeta functions {.(¢; s) and C;;(qg, s) have analytic
continuations of s in C, and the zeta functions multiplied by

(s —1)(s — %) are entire functions of s of finite order in
any vertical strip.
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The functional equation of Siegel’s zeta functions

Theorem 7

The zeta functions (.(¢; s) and C;($; s) satisfy the
following functional equation:

(Ce)

(3 M ?) T(s)|D|} - 2724 . g2+ F 1

sinw (2 — s) sin @ Ci($; s)
. sin %7 sin 7 (mz_p — s) Ci((g; s) -
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Lemma 8

We have
Res C(¢; s) = $(0) d'g,
=72 SO(Y)r/SO(Y)z
Res ( (43 ) = ¢(0) d'g.
s=7 SO(Y)z/SO(Y)z

We also have some formulas for R_els Ce (s s) and

Res G (5 s).
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Main results




Level

Let D = det(2Y) and N be the level of 2Y. That is, IV is
the smallest positive integer such that N (2Y)~! is even
integral. We define a half-integral symmetric matrix Y by

~ 1
Y = _NY L,
4
We define the quadratic form P(v) on V' by
P(v) = Y[v] = *oYw, and the quadratic form P(v*) on
V* by
P(v*) = Y[v"].
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We define a field K by

Qv (—-1)m2D) (m =0 (mod 2))
Q(v/2|DJ) (m=1 (mod 2))

and x i be the Kronecker symbol associated to K.
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Specializing ¢

For an odd prime 7 with (r, N) = 1 and a Dirichlet character
1 of modulus r, we define the function ¢, p(v) on Vi by

by,p(v) = Ty (P(v)) - chzm (v),

where 7, (P(v)) is the Gauss sum. We have

s POKE)

Cs(d)'t/:,P(U); s) = |P(v)]®

vESO(Y)z\VeNVy
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Fourier transform of ¢, p

Lemma 9 (Stark)
Let gb/,!,,\p(v*) be the Fourier transform of ¢, p. Then the
support of ¢, p(v*) is contained in r—*Z™, and for
v* € Z™, we have
by, p(r~ v")

= ’l“_m/2XK(T') : Czp—m,r : ":b*(_N) L (ﬁ(v*))’
where 1 (k) = 9 (k) (7)™ and

1 (m=0 (mod 2))

C —m,r — .
2” e2~™ (m=1 (mod 2))

49/57



Measures of representations (Darstellungsmal)

Definition 10 (Siegel)
Forn € Z \ {0}, we put

M(P;n) = > p(v),
vESO(Y)z\VLNVy
P(v)=n

M*(P;n) = Z p*(v*).
v*ESO(Y)2\VENV;
P(v*)=n

We call M (P;n) (resp. M*(P;n)) the measures of
representation (DarstellungsmaB) of n by P (resp. P).

The sums in the definition are finite sums by a theorem of
Borel and Harish-Chandra. 50/57



Volumes o (a;) on the singular set

Let S g = {v € V& | P(v) = 0,v # 0}. For v € Sy g, we
can define a volume o (v) of SO(Y )yr/SO(Y )yz in a
certain way. In general, SO(Y);\S1,z is not a finite set,

while
{v € SO(Y)z\S1,z; vis primitive}

is a finite set. Let ay,...,an be a complete system of
representatives of this set, and we get volumes
o(a;)(t=1,---,h).
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Assume that at least one of m or p is an odd integer. Take an
integer £ with £ = 2p — m (mod 4). Define C'°°-functions
F(z) on H by

F(z) = ym=9/4. / dlg
JSO(Y)r/SO(Y )z

+ (~1)@Fm0/4¢ (m — 2)
" o(a)  (2m2F0(E -1)

>

T X
S P8 x (=) (=)

|D|z T (mtsenn)e
i 7

. yl—(m+l)/4

X y_£Ww’%_%(4Tr|n|y)e[nw].
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Theorem 11

F(z) is a Maass form for T'q(IN') of weight £/2 with
eigenvalue (m — £€)(4 — m — £) /16 and character x k.
We have a similar result for G(z) that can be constructed
from M*(P;n), and we have

F (-%) (VNz)™Y? = G(2).
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Lower (Upper) triangular case

Assume that the number of negative eigenvalues of Y is even;
that is, 7 — p is an even integer. Then the first row of the
functional equation is of the following form:

m
C+ (¢;? - 3)

(3 L E) T(s)|D|} - 2724 . 2o+ F 1

. (P .
X sin (5 — s) ¢ (5 9).
This suggests that (1 (¢; s) and (% (¢; s) satisfy the

functional equation of Hecke type.

(When p is even, we consider the second row.)
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Holomorphic modular forms

Assume that m — p is even. We define holomorphic functions
F(z) and G(z) on H by

m

F(z)=(-1)"z (2r)"% -T <>/ d'g
2/ Jso()z/SO(Y)z

+ D72 Y M(P;n)e[nz],
n=1

m m

G(z)=i"% . (27)~%-T <m> N’ZE|D|—1/2/ dg
2 SO(Y)z/SO(Y)z

N7 . Z *(P;n)e [nz].
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Holomorphic modular forms

Theorem 12
Then, F(z) and G(z) are holomorphic modular forms for
Lo(IN) of weight m/2. Further we have

F (-Niz) (VNz)"™? = G(z).

This result is consistent with a result of Siegel in 1948, in
which Siegel calculated the action of certain differential
operators on indefinite theta series, and proved that in the
case of det Y > 0, we can construct holomorphic modular
forms from indefinite theta series associated with Y.
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Thank you very much!
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